• 제목/요약/키워드: Critical Fluid Velocity

Search Result 149, Processing Time 0.025 seconds

A Study on the Axial Velocity Profile of Developing Laminar Flows in a Straight Duct Connected to a Square Curved Duct (정사각단면 곡관덕트에 연결된 직관덕트에서 층류유동의 속도분포)

  • Sohn, Hyun-Chull;Lee, Haeng-Nam;Park, Gil-Moon;Lee, Hong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1058-1065
    • /
    • 2004
  • In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180$^{\circ}$ curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles, and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code(STAR CD). For the PIV measurement, working fluid produced from mosquito coils smoke. The experimental data were obtained at 9 points dividing the test sections by 400 mm. Experimental and numerical results can be summarized as follows. Critical Reynolds number, Recr which indicates transition from laminar steady flow to transition steady flow was 2,150. As Reynolds number, Re, was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and the secondary flows. The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number.

Effects of Friction Plate Area and Clearance on the Drag Torque in a Wet Clutch for an Automatic Transmission (클러치 드래그 토크에 미치는 마찰재 면적 및 클리어런스의 영향)

  • Ryu, Jin Seok;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.337-342
    • /
    • 2014
  • The reduction of drag torque is an important research issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because of the viscous drag generated by the transmission fluid in a narrow gap (clearance) between the friction plate and a separate plate. The objective of this paper is to observe the effects of the friction plate area and the clearance on the drag torque using finite element simulation. The two-phase flow of air and oil fluid is considered and modeled for the simulation. The simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. The clearance between the two plates plays an important role in controlling drag torque peak. An increase in the clearance causes a decrease in shear stress; thus, the drag torque also decreases according to Newton's law of viscosity. An observation of the effect of the area of contact between transmission fluid and friction plate shows that the drag torque increases with the contact area. The flow vectors inside the flow channel present clear evidence that the velocity of the fluid flows is faster with a larger friction plate, that is, in the case of a larger contact area. Therefore, the optimum size of the friction plate should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.

Convective Heat Transfer to Water near the Critical Region in Horizontal Rectangular Ducts (수평 직사각 덕트 내 임계점 부근 물의 대류열전달 특성)

  • Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.477-485
    • /
    • 2012
  • Fluid flow and heat transfer in horizontal ducts are strongly coupled with large changes in thermodynamic and transport properties near the critical region as well as the gravity force. Numerical analysis has been carried out to investigate convective heat transfer in horizontal rectangular ducts for water near the thermodynamic critical point. Convective heat transfer characteristics, including velocity, temperature, and the properties as well as local heat transfer coefficients along the ducts are compared with the effect of proximity on the critical point. When there is flow acceleration because of a density decrease, convective heat transfer characteristics in the ducts show transition behavior between liquid-like and gas-like phases. There is a large variation in the local heat transfer coefficient distributions at the top, side, and bottom surfaces, and close to the pseudocritical temperature, a peak in the heat transfer coefficient distribution resulting from improved turbulent transport is observed. The Nusselt number distribution depends on pressure and duct aspect ratio, while the Nusselt number peak rapidly increases as the pressure approaches the critical pressure. The predicted Nusselt number is also compared with other heat transfer correlations.

The Effects of Windbreaks on Reduction of Suspended Particles (방풍벽에 의한 비산 먼지 저감 효과)

  • Song, Chang-Keun;Kim, Jae-Jin;Song, Dong-Woong
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.315-326
    • /
    • 2007
  • The effects of windbreaks on the reduction of suspended particles are investigated using a computational fluid dynamics (CFD) model with the ${\kappa}-{\varepsilon}$ turbulence closure scheme based on the renormalization group (RNG) theory. In the control experiment, the recirculation zones behind the storage piles are generated and, as a whole, relatively monotonous flow patterns appear. When the windbreaks with the 0% porosity are constructed, the recirculation zones are generated by the windbreaks and very complicated flow patterns appear due to the interference between the windbreaks and storage piles. The porosity of the windbreaks suppresses the generation of the recirculation zone and decreases the wind velocity in the windbreaks as well as that outside the windbreaks. As the emission of suspended particles from the storage piles are closely related with the friction velocity at the surfaces of the storage piles, variation of the friction velocity and total amount of the emission of the suspended particles with the height and porosity of the windbreaks are investigated. The results show that higher and more porous windbreaks emit less suspended particles and that the reduction effect of the porosity is still more effective than that of the height. In the case of the windbreak with 30 m height and 50% porosity, friction velocities above the storage piles are smaller than the critical friction velocity above which particles would be suspended. As a result, total amount of suspended particles are much fewer than those in other cases.

Numerical analysis of an offshore platform with large partial porous cylindrical members due to wave forces

  • Park, Min-Su;Kawano, Kenji;Nagata, Shuichi
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.337-353
    • /
    • 2011
  • In the present study, an offshore platform having large partial porous cylindrical members, which are composed of permeable and impermeable cylinders, is suggested. In order to calculate the wave force on large partial porous cylindrical members, the fluid domain is divided into three regions: a single exterior region, N inner regions and N beneath regions, and the scattering wave in each fluid region is expressed by an Eigen-function expansion method. Applying Darcy's law to the porous boundary condition, the effect of porosity is simplified. Wave excitation forces and wave run up on the structures are presented for various wave conditions. For the idealized three-dimensional platform having large partial porous cylindrical members, the dynamic response evaluations of the platform due to wave forces are carried out through the modal analysis. In order to examine the effects of soil-structure interaction, the substructure method is also applied. The displacement and bending stress at the selective nodal points of the structure are computed using various input parameters, such as the shear-wave velocity of soil, the wave height and the wave period. Applying the Monte Carlo Simulation (MCS) method, the reliability evaluations at critical structure members, which contained uncertainties caused by dynamic forces and structural properties, are examined by the reliability index with the results obtained from MCS.

Numerical Study of a Flapping Flat Plate for Thrust Generation (플랩핑 평판의 추력발생에 대한 수치적 연구)

  • An, Sang-Joon;Kim, Yong-Dae;Maeng, Joo-Sung;Han, Chul-Heui
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.209-212
    • /
    • 2006
  • Insect and birds in nature flap their wings to generate fluid dynamic forces that are required for the locomotion. Most of the previous published papers discussed mainly on the effect of flapping parameters such as flapping frequency and amplitude on the thrust at a fixed Reynolds number. However, it is not much known on the values of the flapping parameters that the flapping wing requires to generate the thrust at the low Reynolds number flow. In this paper, the onset of the thrust generation is investigated using the lattice Boltzmann method. The wake patterns and velocity profiles behind a flat plate in heaving oscillation are investigated for the heaving amplitude of 0.5C. The time-averaged thrust coefficient value is investigated by changing the reduced frequency from 0.125 to 3.0 for three values of heaving amplitude (h/C=0.25, 0.325, 0.50). It is also found that the critical Strouhal number over which the flat plate starts to produce the thrust is around 0.1 and the thrust is an exponential function of the Strouhal number.

  • PDF

Multiphase Simulation of Rubber and Air in the Cavity of Mold

  • Woo, Jeong Woo;Yang, Kyung Mi;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.263-268
    • /
    • 2016
  • In the polymer shaping process that uses molds, the quality of the molded products is determined not only by the flow of the (molten) polymer but also by the air venting in the cavity. Inadequate air venting in the cavity can cause defects in the product, such as voids, short shot, or black streaks. As it is critical to consider the location and size of the vents for proper venting of the air in the cavity, a method that predicts the flow of air and material is required. The venting of air by the flow of rubber inside the cavity was simulated by using a multi-phase computational fluid dynamics method. Through computer simulation, the interface of rubber and air over time was predicted. Then, the velocity and pressure distribution of the venting air were observed. Our research proposes a fundamental method for analyzing the multi-phase flow of polymer materials and air inside the cavity of a mold.

Numerical Simulation of Erosive Wear on an Impact Sprinkler Nozzle Using a Remeshing Algorithm

  • Xu, Yuncheng;Yan, Haijun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.287-299
    • /
    • 2016
  • In China, agricultural irrigation water often contains a lot of suspended sediment which may cause the nozzle wear. In this study, a new numerical simulation combing the Discrete Phase Model and a remeshing algorithm was conducted. The geometric boundary deformation caused by the erosion wear, was considered. The weight loss of the nozzle, the node displacement and the flow field were investigated and discussed. The timestep sensitivity analysis showed that the timestep is very critical in the erosion modeling due to the randomness and the discreteness of the erosion behavior. Based on the simulation results, the major deformation of the boundary wall due to the erosion was found at the corners between outlet portion and contraction portion. Based on this remeshing algorithm, the simulated erosion weight loss of the nozzle is 4.62% less compared with the case without boundary deformation. The boundary deformation changes the pressure and velocity distribution, and eventually changes the sediment distribution inside the nozzle. The average turbulence kinetic energy at the outlet orifice is found to decrease with the erosion time, which is believed to change the nozzle's spray performance eventually.

A Study on the Temporary Storage Facility for Mitigating the Leakage Accident (누출 사고 완화를 위한 임시 저장 시설에 관한 연구)

  • Song, Hyeon Oh;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.1-5
    • /
    • 2020
  • The leakage accident from a storage tank in an oil refinery plant occurred in April 2014 and the total loss is KRW 18 billion. This accident has prompted many companies to develop their own mitigation system to minimize the loss of the leakage accident. The aim of this study is to design the temporary storage facility system for dealing with leakage accidents. The basic concept of this system is that the leakage fluid of a hazardous material flows into a temporary storage tank and this is transferred to a spare tank by a pump as avoiding the overflow of a temporary storage tank. In order to design this system, the leakage velocity and quantity according to time series should be evaluated. In addition, a proper pump capacity should be determined to avoid repeating the pump switching on and off frequently. In this study, the benzene tank is selected to verify the efficacy of this system. This study can play a critical role to provide a guideline for designing a new system.

Numerical Study of Density-stratified Flow Past Two 3D Hills - Aligned in Tandem - (두 개의 3차원 지형물 주위의 성층 유동 해석 - 주 유동방향으로 정렬된 경우 -)

  • Choi, Choon-Bum;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1218-1227
    • /
    • 2006
  • In this paper a parametric study using an immersed boundary method has been carried out to investigate the effects of stable density stratification on the wakes past two identical three-dimensional hills aligned in tandem. The Reynolds number based on the uniform inlet velocity and twice the hill height was fixed at Re=300 while the Froude number based on the inlet velocity and the hill height was retained at Fr=0.2. Neutral flow without density stratification was also computed for comparison. Under a strong stratification, vertical motion of fluid particles over the three-dimensional hills is suppressed and the wake structures behind the hills become planar. Depending on the distance between the two hills, the flow pattern of each wake is significantly affected by the stratification. There is a critical hill distance at which flow characteristics drastically change. Qualitative and quantitative features of the wake interaction are reported.