• Title/Summary/Keyword: Critical Evaporation constant

Search Result 4, Processing Time 0.015 seconds

An experimental study on the evaporation of paraffin family fuel droplet under high temperature and high pressure (고온 고압기류중을 비행하는 파라핀계 연료액적의 증발에 관한 연구)

  • ;川口修
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2125-2131
    • /
    • 1991
  • Evaporation rate constant, obtained by in this experimental study, of freely falling liquid fuel droplet on the condition of hot and pressurized environment are converted to critical evaporation constant according to Eq. of Ranz and Marshall. Critical evaporation constant, on constant environment pressuire, actively increase almost linearly with environment temperature increasing, but, on constant temperature, increases more or less with pressure increasing. Multycomponent droplet mixed with the fine fuel having a different of boiling point evaporate in order to boiling point, and each evaporation rate constant of mixed fuel equal to each fuel.

Effect of Heating Medium and Evaporation Temperatures on Concentration of Garlic Juice (가열 매체 및 증발온도가 마늘즙의 농축에 미치는 영향)

  • Kim, Byeong-Sam;Park, Noh-Hyun;Park, Moo-Hyun;Han, Bong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.301-305
    • /
    • 1992
  • Effect of heating medium and evaporation temperatures on a concentration ratio, a evaporation rate and a overall heat transfer coefficient during concentration of garlic juice by a centrifugal thin film evaporator were investigated. At constant feeding rate and evaporation temperature, the concentration ratio, the evaporation rate and the overall heat transfer coefficient increased with the increase of the steam temperature but those values increased slowly or decreased as a steam temperature exceeded $110^{\circ}C$. At the feeding rate of 50 kg/h and the steam temperature of $100^{\circ}C$ and below, those values decreased with the increase of evaporation temperature. But if a steam temperature became $100^{\circ}C$ and up, those values increased slowly and then decreased with the increase of the evaporation temperature until the evaporation temperature reached a critical value. At constant feeding rate, those values increased until the temperature difference between steam and evaporation temperatures became $70^{\circ}C$. But if they become larger than $70^{\circ}C$, those values increased slowly and then decreased.

  • PDF

Structure and Evolution of a Numerically Simulated Thunderstorm Outflow (수치 모사된 뇌우 유출의 구조와 진화)

  • Kim, Yeon-Hee;Baik, Jong-Jin
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.857-870
    • /
    • 2007
  • The structure and evolution of a thunderstorm outflow in two dimensions with no environmental wind are investigated using a cloud-resolving model with explicit liquid-ice phase microphysical processes (ARPS: Advanced Regional Prediction System). The turbulence structure of the outflow is explicitly resolved with a high-resolution grid size of 50m. The simulated single-cell storm and its associated Kelvin-Helmholtz (KH) billows are found to have the lift stages of development maturity, and decay. The secondary pulsation and splitting of convective cells resulted from interactions between cloud dynamics and microphysics are observed. The cooled downdrafts caused by the evaporation of rain and hail in the relatively dry lower atmosphere result in thunderstorm cold-air outflow. The outflow head propagates with almost constant speed. The KH billows formed by the KH instability cause turbulence mixing from the top of the outflow and control the structure of the outflow. Ihe KH billows are initiated at the outflow head, and pow and decay as moving rearward relative to the gust front. The numerical simulation results of the ratio of the horizontal wavelength of the fastest growing perturbation to the critical shear-layer depth and the ratio of the horizontal wavelength of the billow to its maximum amplitude are matched well with the results of other studies.

AN EXPERIMENTAL STUDY ON THE ALTERATIONS OF ION-BEAM-ENHANCED ADHESIONS ON A VARIETY OF CERAMIC-METAL INTERFACES (이온선 혼합법이 도재-금속 계면 변화에 미치는 영향에 관한 실험적 연구)

  • Chung Keug-Mo;Park Nam-Soo;Woo Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.135-154
    • /
    • 1992
  • This study was performed to analyze bond strength, the alterations of the interfaces between metal films which are populary used and considered to contribute to the chemical reaction with porcelain, according to constant ion- beam- mixing, and the relation between interfacial chemical reactions and bond strength in metal/porcelain specimens. For this study, three seperate metals : selected-gold, indium and tin were chosen ; each to be bonded to a seperate body porcelain. Bonding occurs when the metal is deposited to the body porcelain using a vacuum evaporator. The vacuum evaporator used $10^{-5}\sim10^{-6}$ Torr vacuum states for the evaporation of various metals (Au, Sn, In). Ion-beam-mixing of the porcelain/metal interfaces caused reactions when the Ar+ was implanted into thin films using a 80 KeV accelerator. These ion-beam-mixed specimens were then compared with an unmixed control group. An analysis of bond strength and ionic changes between the the metal and porcelain was performed by electron spectroscopy of chemical analysis (ESCA) and scratch test. The finding led to the following conclusions : 1. Light microscopic views of the scratch test : The ion-beam-mixed Au/porcelain specimen showed narrower scratched streams than the unmixed specimen. However, the Sn/porcelain, In/porcelain specimens showed no differences in the two conditions. 2. Acoustic emissions in scratch tests : The ion-mixed Au/porcelain, In/porcelain specimens showed signals closer to the metal/porcelain interfaces than unmixed specimens. Conversely, the ion-mixed Sn/porcelain specimen showed more critical signals in superficial portions than unmixed specimens. 3. After ion- beam-mixing, the Au/porcelain specimen showed apparently increased bond strength, and the In/porcelain specimen showed very slightly increased bond strength. However, the Sn/porcelain specimen showed no differences between ion mixed specimen and the unmixed one. 4. ESCA analysis : The ion-beam-mixed Au/porcelain specimen showed a higher peak separated value (4.3eV) than that of the unmixed specimen(3.65eV), the ion-beam-mixed In/porcelain specimen showed a higher peak separated value (9.43eV) than that of the unmixed specimen(7.6eV) and the ion-beam-mixed Sn/porcelain specimen showed a higher peak separated value (8.79eV) than that of the unmixed specimen(8.5eV). 5. Interfacial changes were observed in the ion-mixed Au/porcelain, In/porcelain and Sn/porcelain specimens. Especially, significant interfacial changes were measured in the ion- mixed Sn/porcelain specimen. Tin dioxide(SnO2) and a combination of pure tin and tin dioxide (Sn+SnO2) were produced. 6. In the Au/porcelain specimen, the interfacial chemical reaction showed increased bond strength between gold and porcelain substrate. But, in the In/porcelain, Sn/porcelain specimens, interfacial chemical reactions did not affected the bond strength between metal and porcelain substrate. Especially, bonding strength on the ion mixed Sn/porcelain specimen showed the least amount of difference.

  • PDF