• Title/Summary/Keyword: Criteria pollutant

Search Result 111, Processing Time 0.018 seconds

Rapid Bioassessments of Kap Stream Using the Index of Biological Integrity (생물보전지수(Index of Biological Integrity)의 신속한 생물평가 기법을 이용한 갑천 수계의 평가)

  • Yeom, Dong-Hyuk;Lee, Sung-Kyu;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.4
    • /
    • pp.261-269
    • /
    • 2001
  • The purpose of present study was to introduce a multimetric approach, so called the Index of Biological Integrity (IBI) as a tool for evaluations of water environments. We used 11 metric systems for the IBI to evaluate stream conditions, based on the fish community, and modified 5 original metric attributes suggested by Karr (1981). Overall IBI values in Kap Stream averaged 36 (n = 5) and ranged 17${\sim}$49, indicating a 'fair condition' according to the modified criteria of Karr (1981) and U.S. EPA (1993). However, there were distinct differences in the IBI values among 5 study sites. The IBI values at sites 1, 2, and 3 were 49, 45, and 41, which indicated 'good${\sim}$excellent', 'good', and 'fair' condition, respectively, while values at sites 4 and 5 were 17 and 29, which indicated 'very poor' and 'poor', respectively. The minimum IBI at site 4 was probably due to continuous inputs of wastewater from wastewater disposal plants. The condition at site 4 resulted in predominance of tolerant species (50%), omnivore species (50%), and high abnormalies (43%). In the mean time, the IBI value at site 5, located near 5km downstream from the site 4, increased compared to that of site 4, and this seemed to be a result of recovery of water quality as the polluted water goes downward. We believe that present bioassessment methodology of IBI applied in this study may be used as a key tool to set up specific goals for stream restoration plans and dentify recovery levels of lotic ecosystems after restoration activities(i.e., prevention of point-source pollutant input, restoration of physical habitats, construction of riparian vegetation) as well as a biological measure diagnosing current stream conditions.

  • PDF