This study examines the limitations of existing crime mapping that relies mainly on reported crime data, suggests a crime mapping method based on experts' and users' assessments of a neighborhood environment as an alternative approach, and conducts a case study on a real-world site by applying the suggested approach. According to the results of the case analysis, while the areas adjoining arterial roads with heavy pedestrian traffic were shown as high crime risk areas in the crime map based on actual reported crime data, the areas adjoining local roads with low pedestrian traffic were high-risk areas in the crime risk area map based on experts' and residents' evaluations. This study makes a contribution to the field in that it demonstrates the detailed application process of crime risk area mapping according experts' and residents' evaluations, compares the results with those of an existing crime map, and finally shows that the former can function as a complement to the latter.
Korea has relatively less crime than other countries. However, the crime rate is steadily increasing. Many people think the crime rate is decreasing, but the crime arrest rate has increased. The goal is to check the relationship between CCTV and the crime rate as a way to lower the crime rate, and to identify the correlation between areas without CCTV and areas without CCTV. If you see a crime that can happen at any time, I think you should use a random forest algorithm. We also plan to use machine learning random forest algorithms to reduce the risk of overfitting, reduce the required training time, and verify high-level accuracy. The goal is to identify the relationship between CCTV and crime occurrence by creating a crime prevention algorithm using machine learning random forest techniques. Assuming that no crime occurs without CCTV, it compares the crime rate between the areas where the most crimes occur and the areas where there are no crimes, and predicts areas where there are many crimes. The impact of CCTV on crime prevention and arrest can be interpreted as a comprehensive effect in part, and the purpose isto identify areas and frequency of frequent crimes by comparing the time and time without CCTV.
개인의 안전에 직접적인 위협을 끼치는 도심 속의 범죄는 심각한 사회문제 중의 하나이다. 국내에서 범죄에 관한 정보는 주로 범죄 발생지점 주변의 핫스팟 형태로 제공되거나 위치정보가 없는 범죄 통계 형태로 제공되고 있다. 이로 인해 사용자가 실질적인 범죄발생에 취약한 지역을 파악하기가 쉽지 않은 실정이다. 본 연구에서는 공간정보, 통계정보, 공공정보를 이용하여 범죄발생 취약지역을 추출하는 기법을 제안하였다. 범죄발생 취약지역은 각각의 정보를 격자망 기반의 공간분석과 중첩분석을 통하여 추출하였으며 기존의 핫스팟 기반의 범죄관련 정보보다 상세한 범죄 취약정보를 제공하고자 하였다. 본 연구를 통해 추출한 범죄발생취약지역 결과는 국민생활안전지도와 비교하였으며 이를 통해 범죄발생 취약지역의 정확도가 높은 것으로 확인되었다. 본 연구의 결과는 향후 행정업무 차원에서 등급별 범죄 발생위험도 제공에 활용할 수 있을 것으로 사료된다.
Scientific analysis of crime hot spots is essential in preventing and/or suppressing crime. However, results could be different depending on the analytic methods, which highlights the importance of choosing adequate tools. The purpose of this study was to introduce two advanced techniques for detecting crime hot spots, GAM and Local Moran's I, hoping for more police agencies to adopt better techniques.GAM controls for the number of population in study regions, but local Moran's I does not. That is, GAM detects high crime rate areas, whereas local Moran's I identifies high crime volume areas. For GAM, physical disorder was used as a proxy measure for population at risk based on the logic of the broken windows theory. Different regions were identified as hot spots. Although GAM is generally regarded as a more advanced method in that it controls for population, it's usage is limited to only point data. Local Moran's I is adequate for zonal data, but suffers from the unavoidable MAUP(Modifiable Areal Unit Problem).
범죄는 특정한 장소나 주변 환경에 따라서 범죄의 유형과 빈도가 매우 밀접한 관계를 갖으며 발생된다. 특히 공간적으로 범죄는 도심지역, 유흥가, 노상 등에서 많이 발생된다. 이러한 이유로 범죄와 발생장소와의 관계를 분석하는 것은 범죄를 예측하는데 효과적이며 이를 위해서 다양한 공간분석 기법이 적용되고 있다. 이에 본 논문에서는 범죄 예측에 활용코자 GIS 공간분석 기법을 이용하여 범죄취약지를 추출하였다. 범죄취약지는 범죄통계자료를 이용하여 장소와 용도지역별로 다르게 발생되는 범죄를 GIS의 핫스팟 분석(Hot Spot Analysis)과 역거리 가중법(IDW)을 이용하여 추출하였다. 또한 셉테드(CPTED)의 감시요소인 CCTV, 가로등, 지구대, 파출소에 대해서 각각 감시범위와 가중치를 산정하고 범죄취약지도와 중첩하여 4개 등급(안전, 주의, 경고, 위험)으로 표현된 셉테드 기반의 범죄취약지도를 제작하였다.
The purpose of this study is to analyse the hazard risk by examining the magnitude and severity of each type of hazard in order to mitigate and prepare for disasters in medical facilities. Methods: The hazard risk analysis for hazard types was surveyed for team leaders of medical facilities. The questionnaire analyzed data from 27 facilities, which were returned from 41 Local Medical Centers. Results: When looking at the 'Risk' by category type of hazard, the influence of health safety and fire/energy safety comes first, followed by natural disaster, facility safety, and crime safety. On the other hand, as for 'Magnitude', facility safety and crime safety come first, followed by health safety, fire/energy safety, and natural disasters. Most of the top types of disaster judged to have high hazard in medical facilities are health types. The top five priorities of hazard in medical facilities, they are affected by the geographical and industrial conditions of the treatment area. In the case of cities, the hazard was found to be high in the order of infectious disease, patient surge, and wind and flood damage. On the other hand, in rural areas, livestock diseases and infectious diseases showed the highest hazard. In the case of forest areas, the hazard was high in the order of wildfire, fire accident, lightning, tide, earthquake, and landslide, whereas in coastal areas of industrial complexes, the hazard was high due to fire, landslide, water pollution, marine pollution, and chemical spill accident. Implications: Through the research, standards will be established for the design of hospitals with disaster preparedness, and will contribute to the preparation of preemptive measures in terms of maintenance.
범죄는 장소나 건축물 용도에 따라 발생빈도와 유형이 다르고, 그 장소를 이용하는 사람들의 특성 및 공간 구조 차이에 의해 다양하게 발생한다. 따라서 공간 및 지역특성을 포함한 공간 빅데이터를 활용하여 지역을 분석해 보면 범죄예방 전략을 마련할 수 있다. 아울러 빅데이터와 지능 정보화시대의 도래에 따라 예측적 경찰활동이 새로운 경찰활동의 패러다임으로 등장하고 있다. 이에 보편적인 지방도시 J시를 대상으로 3개년 동안의 7,420건의 실제 범죄사례를 바탕으로 도시공간의 물리 환경적인 특성을 분석하여 범죄발생공간을 규명하고, 위험지역을 예측해 보고자 하였다. 분석에는 다양한 빅데이터 중 범죄를 유발하는 도시 공간 내 물리 환경적 요소에 한하여 공간 빅데이터를 구축하여 공간회귀분석을 실시하였다. 다음으로 분석결과 도출된 가로폭, 평균 층수, 용적율, 1층 사용용도(제2종 근린생활시설, 상업시설, 유흥시설, 주거시설)을 변수로 베이지안확률 기반 범죄발생 위험성 예측 모형(CIPM: Crime Incident Prediction Model)을 개발하였다. 개발된 모델은 실제 범죄발생 지역과의 중첩분석 및 모델의 정확도를 판단하는 Roc curve 분석을 통해 AUC 값이 0.8로 모델이 적합한 것으로 나타났다. 개발된 모델을 토대로 사례지역의 범죄 위험도를 분석한 결과 범죄발생은 상업 및 유흥시설이 밀집된 지역과 건물층수가 높은 지역, 그리고 상업 및 유흥시설과 주거가 혼재해 있는 블록이 범죄발생 확률이 높은 것으로 나타났다. 본 연구는 단순히 범죄의 공간적 분포와 범죄발생 영향요인을 탐색하는 기존의 연구와 달리 범죄발생 예측모델을 확률론적 관점에서 개발하는 영역으로 한 단계 진전되었다는 점에 의의가 있다.
본 논문에서는 빅 데이터를 이용하여 범죄 발생 패턴을 분석하는 알고리즘을 제안하고 구현했다. 제안된 알고리즘은 대검찰청에서 수집하여 공개한 범죄관련 빅 데이터를 사용하며, 표준편차 타원체 및 공간밀도 분석과 같은 공간통계분석을 통해 서울시의 2011-2013년 범죄발생 패턴을 분석했다. 범죄 발생 빈도수를 이용하여 범죄발생지역, 시간, 요일, 장소의 위험지수를 구했고, 범죄 패턴 분석 알고리즘을 통해 범죄 발생 확률을 구했다. 이를 통해 공간통계분석을 했다. 제안된 알고리즘의 구현 결과, 서울시의 각 구별로 범죄발생 패턴이 다르다는 것을 파악할 수 있었고, 다양한 범죄발생 패턴을 분석하고 범죄발생확률을 위험지수를 통해 수치화하여 위험도를 정량적으로 산출할 수 있었다.
범죄, 화재, 교통사고 등 국민의 안전을 위협하는 위험인자들은 지역적 맥락과 공간적 특성을 가지고 있다. 지역마다 서로 다른 위험환경을 가지고 있으므로 교통사고, 화재, 범죄, 생활안전 분야별로 위험요소의 공간적 패턴을 분석할 필요가 있다. 본 연구는 전국 기초자치단체를 대상으로 분야(교통사고, 화재, 범죄, 생활안전, 자살, 감염병)별 안전등급을 측정한 지표인 지역안전지수의 공간적 분포 패턴을 분석하는데 연구의 목적이 있다. 지역안전지수의 공간적 자기상관성 분석을 위해 전역적 공간자기상관분석(Global Moran's I)과 Local Moran's I를 활용한 LISA(Local Indicators of Spatial Association) 분석, Getis-Ord's G⁎i 분석을 실시하였다. 분석결과 교통사고, 화재, 자살의 안전지수 분포는 범죄, 생활안전, 감염병의 안전지수보다 공간적으로 집중(clustered) 경향을 보였다. 지역간 유의미한 공간적 연관성을 분석한 LISA 분석결과에 따르면, 수도권 지역이 다른 도시에 비하여 지역안전통합지수를 기준으로 비교적 안전한 지역인 것으로 나타났다. 또한 Getis-Ord's G⁎i 통계값을 활용한 핫스팟분석 결과 안전 취약지역의 군집인 3개의 핫스팟(강원도 삼척시, 경상북도 청송군, 전라북도 김제시)과 전반적인 안전 수준이 높은 군집인 15개의 콜드스팟이 도출되었다. 이러한 연구 결과는 안전 수준 취약지역의 공간적 분포와 패턴을 파악하여 안전 지수 개선을 위한 정책 수립시 기초자료로 활용될 수 있다.
본 연구의 목적은 공간적 분포 특성만을 고려하고 있는 기존의 핫스팟분석에 대한 대안적인 방법으로서 공간상에서 나타나는 사건간의 인과관계를 시간영역으로까지 확장하여 동시적 분석이 가능한 시공간분석 방법을 제안하는 것이다. 분석방법으로는 먼저 지리정보시스템을 이용하여 지방중소도시인 M시의 범죄자료를 데이터화 하였고, Ripley K함수와 시공간검정통계량 분석을 통해 M시의 범죄분포 패턴을 지도화 하였다. 연구결과, 범죄위험도가 유의미하게 높은 지역들이 나타났으며, 이들 시공간적 범죄 집중지역들은 기존의 공간분포만을 고려한 범죄분포 패턴과는 다소 차이가 있음을 발견할 수 있었다. 본 연구결과는 시공간적인 범죄분포 특성에 맞는 맞춤형의 경찰 인력 배치와 배분, 그리고 치안행정 서비스 등의 조정을 위한 참고자료로서, 또한 시공간적인 집중을 보이는 이들 지역을 중심으로 물리적 환경 변화의 유도와 공간이용의 개선 효과를 통해 범죄율을 줄여나가는 범죄예방 활동 및 정책수립을 위한 기초자료로도 유용하게 활용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.