• Title/Summary/Keyword: Cretaceous basin

Search Result 229, Processing Time 0.024 seconds

Surface geophysical surveys the northern part of the Yongdong basin (Cretaceous), Korea (영동분지(백악기) 북부 지역에 대한 지표물리탐사)

  • Kim, Ji-Su;Han, Soo-Hyung;Rhee, Cheol-U;Kim, Bok-Cheol;Ryang, U-Heon
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.329-336
    • /
    • 2002
  • Electrical resistivity dipole-dipole, seismic refraction, and seismic reflection methods were performed to delineate the boundaries the Yongdong basin(Cretaceous) in terms of physical properties and to ultimately identify the margin architectures of the faults or unconformities. Higer resistivities (approximately >2000 ohm-m) most likely originate from the basement of the basin, contrasting with the lower resistivities from infilled sedimentary rocks. Faults at the eastern margin and unconformities at the western boundary are characterized as high-slope($70^{\circ}$) and gentle-slope($30^{\circ}$) gradients in the resistivity sections, respectively Such features for the boundaries are also suggested by the lower values of seismic velocity and resistivity for the western margin.

  • PDF

A Geochemical Study on the Chindong and Yucbeon - Eonyang Granites in Relation to Mineralization (진동화강암 및 유천-언양화강암의 광화작용에 관한 지화학적 연구)

  • Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.21-34
    • /
    • 1989
  • Chindong granites are classified into granodiorite, tonalite and quartz-diorite, and Yucheon - Eonyang granites into monzo-granite by the Streckeisen diagram. These granitic rocks of Cretaceous age show trend of calc-alkaline magma, and the magmatic evolution from basic to acidic rocks is consistant with the general crystallization path of the Cretaceous granitic rocks in the Gyeongsang basin. On the basis of petrological and petrochemical data, variation of major elements (K, Na, Ca, Mg) and trace elements (Rb, Sr, Ba) including ore metals (Cu, Pb, Zn) in the Cretaceous granitic rocks were studied in detail in order to investigate geochemical difference of the granitic rocks in relation to mineralization between Cu province and Pb-Zn province in the Gyeongsang basin. There is clear difference in content of the major elements between Chindong granites and Yucheon-Eonyang granites : Chindong granites have low content of K (1.62%) and Na (2.53%), and high content of Ca (3.75%) and Mg (1.42%) whereas Yucheon-Eonyang granites have high content of K (3.56-3.60%), and low content of Ca (0.96-0.26%) and Mg (0.26-0.21%). There is also clear difference in content of trace lithophile elements between Chindong granites and Yucheon-Eonyang, granites : Chindong granites have low content of Rb (86ppm) and Ba (330ppm), and high content of Sr (405ppm) while Yucheon-Eonyang, granites have high content of Rb (144-161ppm) and Ba (983-1030ppm), and low content of Sr (157-136ppm). The lithophile trace elements of Rb and Sr vary with close relationship to major elements of K and Ca, respectively. Therefore, Chindong granites are much easily distinguished from Yucheon-Eonyang granites by using relationship of K with Rb and Ca with Sr : K<3%, Rb<100ppm, Ca<2% and Sr>200ppm for Chindong granites, and K>3%, Rb>100ppm, Ca<2%, and Sr<200ppm for Yucheon-Eonyang granites. There is not clear difference in content of trace ore metals between Chindong granites and Yucheon-Eonyang granites : Chindong granites of the Cu province have low Cu content (15ppm) which is nearly equal to 13-14ppm of Yucheon-Eonyang granites of the Pb-Zn province, and Yucheon-Eonyang granites have Pb content (29-27ppm) which is rather lower than 37ppm of Chindong granites. But Cu is anomalously high in the mineralized part of Chindong granites in Gunbuk-Haman area, and Zn is apparently higher in Yucheon-Eonyang granites (51-37ppm) than in Chindong granites (29ppm). K/Pb ratio is also c1early distinguishable between Chindong granites (<850) and Yucheon-Eonyang granites (>850). Thus, it may be possible to apply geochemical difference of the granites to distinguish whether a Cretaceous granitic body is Cu related rock or Pb-Zn related rock, and whether it belongs to Cu province or Pb-Zn province in the Gyeongsang basin.

  • PDF

Petrology and Structural Geology of the Late Cretaceous Volcanic Rocks in the Northeastern Part of Yucheon Basin (유천분지(楡川盆地) 북동부(北東部) 백악기(白堊記) 화산암류(火山岩類)의 화산암석학(火山岩石學) 및 지질구조(地質構造))

  • Kim, Sang Wook;Lee, Young Gil
    • Economic and Environmental Geology
    • /
    • v.14 no.1
    • /
    • pp.35-49
    • /
    • 1981
  • The studied area is largely occupied by thick piles of the late Cretaceous volcanic rocks of the Yucheon group, which is northeastern border part of the vast volcanic region in the Yucheon basin. The Yucheon group overlies the Geoncheonri Formation and is intruded by granitic and dioritic stocks and dykes. The group can be devided into two parts; the lower is Jusasan andesitic rocks which was called as Jusasan Porphyrite Formation by Tadeiwa in 1929, and the upper is Unmunsa rhyolitic rocks. The volcanic pile consists mainly of various tuffs such as tuff breccia, lapilli tuff, coarse to fine tuff and tuffaceous sediments, and interlayered flows, which range from basaltic andesite to rhyolite in their lithology. The results of petrochemical and volcanostratigraphic studies on the Jusasan andesitic socks suggest that the volcanic rocks were derived from two cyclic evolutions of magmatic fractionation. Systematic study of 5226 joints from the area reveals two sets of steep joints striking $N20^{\circ}-40^{\circ}E$ and $N40^{\circ}-70^{\circ}W$, are dominant and coincide with the fault pattern developed in the area. Three defferent maximum principal stress axes were recognized from conjugate shear joints, which are trending east-west, north-northwest, and north-northeast.

  • PDF

A Paleomagnetic Study of Cretaceous Rocks from the Euiseong Area (의성지역에 분포하는 백악기 지층에 대한 고지자기 연구)

  • Doh, Seong-Jae;Kim, Kwang-Ho
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.263-279
    • /
    • 1994
  • Paleomagnetic and rock-magnetic data of Cretaceous sedimentary and volcanic rocks from the Euiseong area indicate that the stable components of remanence are carried by single and pseudo-single domain magnetite, with the exception of the Shinyangdong Formation which has been remagnetized. The Hayang Group, except for the remagnetized Shinyangdong Formation, yields the mean characteristic direction of $D/I=22.5^{\circ}/57.2^{\circ}$ (${\alpha}_{95}=4.6^{\circ}$, N=14 sites) and the pole position is $72.0^{\circ}N$, $206.4^{\circ}E$ ($dp/dm=4.9^{\circ}/6.7^{\circ}$). The Yucheon Group shows two polarities and the mean characteristic direction of $D/I=351.2^{\circ}/60.5^{\circ}$ (${\alpha}_{95}=11.2^{\circ}$, N= 19 sites) and the pole position is $81.3^{\circ}N$, $79.0^{\circ}E$ ($dp/dm=13.0^{\circ}/17.0^{\circ}$). The mean directions of both the Hayang and the Yucheon Groups are supported by the McElhinny's fold test at the 99% confidence level and that of the Yucheon Group by a reversal test at the 95% confidence level. A magnetostratigraphic correlation between polarities of the study formations and the Geomagnetic Time Scale indicates that the Hayang Group can be correlated to the Cretaceous Long Normal Superchron (CLNS), and the Yucheon Group to the boundary between the CLNS and the Polarity Chron 33R or later boundaries between normal and reverse polarities. Comparison of the paleopoles from this study with those from the surrounding areas both within the Gyeongsang basin and in the northeastern Asia indicates that the study area was not undergone significant tectonic rotations with respect to the other parts of the Gyeongsang basin and that the Korean Peninsula was the part of the single terrane of the northeastern Asia at least since the CLNS. The Yucheon Group can be divided into four sub-groups based on the paleomagnetic data, suggesting that there were at least four times of volcanic activities in the study area.

  • PDF

Remagnetization of the Cretaceous Sedimentary Rocks in the Yeongdong Basin (영동분지에 분포하는 백악기 퇴적암류의 재자화)

  • Doh, Seong-Jae;Cho, Yun-Young;Suk, Dongwoo
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.193-209
    • /
    • 1996
  • Paleomagnetic and rock-magnetic data have been obtained from the Cretaceous rocks (Yeongdong Group, volcanic rock, and intrusive rocks) which are exposed in the Yeongdong Basin. The characteristic remanent directions of these rocks, which are mainly carried by magnetite and hematite of single and pseudo-single domain sizes, are normally magnetized (Yeongdong Group: $D/I=29.6/59.0^{\circ}C$, k=75.7, ${\alpha}_{95}=3.3^{\circ}$, N=25 sites, paleopole at $198.0^{\circ}E$, $66.4^{\circ}N$, K=46.1, $A_{95}=4.3^{\circ}$; volcanic rock: $D/I=352.8/44.1^{\circ}$, k=44.2, ${\alpha}_{95}=18.8^{\circ}$, N=3 sites, paleopole at $340.0^{\circ}E$, $78.8^{\circ}N$, $K=49.8^{\circ}E$, $A_{95}=17.6^{\circ}$X>; intrusive rocks: $D/I=358.4/51.9^{\circ}C$, k=20.0, ${\alpha}_{95}=13.8^{\circ}$, N=7 sites, paleopole at $338.1^{\circ}E$, $86.8^{\circ}N$, K=13.5, $A_{95}=17.1^{\circ}$). The stepwise unfolding of the characteristic remanent magnetization (ChRM) of the Yeongdong Group reveals that a maximum value of k is observed at 60% of unfolding with $D/I=13.0/58.6^{\circ}$ (k=124.62, ${\alpha}_{95}2.6^{\circ}$) indicating that the ChRM was aquired during ti1ting of the strata. This remagnetized ChRM in the sedimentary strata is due to acquisition of geomagnetic field direction at the time of formation of authigenic magnetic minerals, although it is not totally ruled out that the formation of authigenic magnetic minerals was affected indirect1y by the elevated temperature originated from the volcanic and intrusive rocks which intruded between Late Cretaceous and Early Tertiary.

  • PDF

SHRIMP U-Pb Zircon Ages of the Gusandong (Kusandong) Tuff in the Cretaceous Gyeongsang Basin (백악기 경상분지 구산동응회암의 SHRIMP 저콘 연대)

  • Kim, Jong-Sun;Cho, Hyeongseong;Kim, Hong-Gyun;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.235-249
    • /
    • 2013
  • The Gusandong Tuff (Kusandong Tuff), known as a very significant key bed in the Cretaceous Gyeongsang Basin, is divided into (1) Northern Gusandong Tuff (NKT), (2) Southern Gusandong Tuff (SKT), and (3) Sinsudo Tuff, which were derived from different vents. In order to suggest their more accurate eruption times and to contribute to establishing stratigraphy of the basin, SHRIMP U-Pb zircon ages were determined from the three tuffs. As a result, the virtually same ages of $103.0{\pm}1.2$ Ma and $104.1{\pm}1.3$ Ma were obtained from NKT and SKT, respectively, which mean that they simultaneously erupted during 103~104 Ma. The zircon ages obtained from the Sinsudo Tuff are however divided into two groups i.e. $103.4{\pm}2.1$ and $95.79{\pm}0.98$ Ma. Based on distinctive morphology and cathodoluminescence image of the younger zircons, the younger age, $95.79{\pm}0.98$ Ma, is much more reasonable as the eruption time of the Sinsudo Tuff.

Petrogenesis of Early Cretaceous Magmatism in Eastern China and the Gyeongsang Basin, Korean Peninsula (동중국과 한반도 경상분지의 백악기초기 화성활동의 성인 고찰)

  • Choi, Sung Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.51-67
    • /
    • 2016
  • Geochemical characteristics of the Early Cretaceous igneous rocks from eastern China and the Gyeongsang Basin, Korean Peninsula has been summarized. They have wide range of lithological variation with extrusive picrite-basalt-andesite-trachyte-rhyolite and lamprophyre, and intrusive gabbro-diorite-monzonite-syenite-granite and diabase in eastern China, mostly belonging to the high-K calc-alkaline or shoshonitic series. The volcanic rocks intercalated with the Hayang Group sedimentary assemblages in the Gyeongsang basin are high-K to shoshonitic basaltic trachyandesites. The Early Cretaceous basaltic rocks studied mostly fall within the field of within-plate basalts on the Zr/Y-Zr and Nb-Zr-Y tectonic discrimination diagrams. On a Sr-Nd isotope correlation diagram, basaltic rocks from the North China block (NCB) and the continent-continent collision zone (CZ) between the North and South China blocks plot into the enriched lower right quadrant along the extension of the mantle array. The initial $^{87}Sr/^{86}Sr$ ratios of basaltic rocks from the South China block (SCB) are indistinguishable from those of the NCB and CZ basaltic rocks, but their ${\varepsilon}_{Nd}$ (t) values are relatively more elevated, plotting in right side of the mantle array. Basaltic rocks from the NCB and CZ are characterized by low $^{206}Pb/^{204}Pb(t)$ ratios, lying to the left of the Geochron on the $^{207}Pb/^{204}Pb(t)$ vs. $^{206}Pb/^{204}Pb(t)$ correlation. Meanwhile, the SCB basaltic rocks have relatively radiogenic Pb isotopic compositions compared with those of the NCB and CZ basaltic rocks. Basaltic rocks from the Hayang Group plot within the field of the NCB basaltic rocks in Sr-Nd and Pb-Pb isotope spaces. Metasomatically enriched subcontinental lithospheric mantle (SCLM) is likely to have been the dominant source for the early Cretaceous magmatism. Asthenospheric upwelling under an early Cretaceous extensional tectonic setting in eastern China and the Korean Peninsula might be a heat source for melting of the enriched SCLM. Metasomatic agents proposed include partial melts of lower continental crust delaminated and foundered into the mantle or subducted Yangtze continental crust, or fluid/melt derived from the subducted paleo-Pacific plate.

High-resolution Seismic Study Using Weigh-drop at the Boundary of Pungam Basin (중력추를 이용한 풍암분지 경계 부근에서의 고해상도 반사파 탐사)

  • Kim, Hyoun Gyu;Kim, Ki Young
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.519-526
    • /
    • 1998
  • A high-resolution seismic survey was conducted at the northeastern boundary of Pungam basin, one of the Cretaceous sedimentary basins in Korea. A 100 kg weight was used as an energy source and was found to be better than a sledge hammer in mapping deeper geologic structures. Several processing techniques such as f-k filtering, predictive deconvolution, and time-variant filtering are useful to enhance the signal-to-noise ratio by suppressing unwanted seismic energy. Four seismic units are recognized where many vertical faults are developed. The boundary fault between sedimentary rocks and Precambrian gneiss is identified along with a fracture zone of approximately 30 m wide. Bedding planes of the sedimentary rocks dipping westward are interpreted to be limbs of a syncline or volcanic flow. There faults and tilted bedding planes indicate that the basin had undergone significant tectonic deformation.

  • PDF

Excavation and Restoration of the Sangchon-ri Dinosaurs Track fossils (진주 상촌리 공룡발자국 화석의 발굴과 복원)

  • 서승조;임성규;박강은
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.905-910
    • /
    • 2003
  • The valuable fossils are distributed in Korean peninsula. In consequence of the development of inland, many road constructions and other public works have been carried out. As a matter of course, lots of paleontological materials in Kyongsang basin were destroyed. Fortunately, one of them was rescued and restored in a suitable place by authors. A fine 4×5 m sandstone slab having about 40 dinosaur tracks was brought from Sangchon-ri, Jinju city, and restored at Danghangpo, Goseong County, Gyeongsangnam-do Province. This fossil bearing slab suggests dinosaurs' ecology and paleo-environment during the early Cretaceous Period of Kyongsang basin.