• 제목/요약/키워드: Creep of cable wire

검색결과 4건 처리시간 0.018초

Non-linear rheology of tension structural element under single and variable loading history Part I: Theoretical derivations

  • Kmet, S.
    • Structural Engineering and Mechanics
    • /
    • 제18권5호
    • /
    • pp.565-589
    • /
    • 2004
  • The present paper concerns the macroscopic overall description of rheologic properties for steel wire and synthetic fibre cables under variable loading actions according to non-linear creep and/or relaxation theory. The general constitutive equations of non-linear creep and/or relaxation of tension elements - cables under one-step and the variable stress or strain inputs using the product and two types of additive approximations of the kernel functions are presented in the paper. The derived non-linear constitutive equations describe a non-linear rheologic behaviour of the cables for a variable stress or strain history using the kernel functions determined only by one-step - constant creep or relaxation tests. The developed constitutive equations enable to simulate and to predict in a general way non-linear rheologic behaviour of the cables under an arbitrary loading or straining history. The derived constitutive equations can be used for the various tension structural elements with the non-linear rheologic properties under uniaxial variable stressing or straining.

Fatigue characteristics of distributed sensing cables under low cycle elongation

  • Zhang, Dan;Wang, Jiacheng;li, Bo;Shi, Bin
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1203-1215
    • /
    • 2016
  • When strain sensing cables are under long-term stress and cyclic loading, creep may occur in the jacket material and each layer of the cable structure may slide relative to other layers, causing fatigue in the cables. This study proposes a device for testing the fatigue characteristics of three types of cables operating under different conditions to establish a decay model for observing the patterns of strain decay. The fatigue characteristics of cables encased in polyurethane (PU), GFRP-reinforced, and wire rope-reinforced jackets were compared. The findings are outlined as follows. The cable strain decayed exponentially, and the decay process involved quick decay, slow decay, and stabilization stages. Moreover, the strain decay increased with the initial strain and tensile frequency. The shorter the unstrained period was, the more similar the initial strain levels of the strain decay curves were to the stabilized strain levels of the first cyclic elongation. As the unstrained period increased, the initial strain levels of the strain decay curves approached those of the first cyclic elongation. The tested sensing cables differed in the amount and rate of strain decay. The wire rope-reinforced cable exhibited the smallest amount and rate of decay, whereas the GFRP-reinforced cable demonstrated the largest.

국내 현수교량의 케이블 밴드볼트 축력관리 및 검토사례 (A Case Study on Axial Forces of Cable-band Bolts in Domestic Suspension Bridge)

  • 박시현;정우영;김현우;유동우
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권2호
    • /
    • pp.1-7
    • /
    • 2018
  • 현수교 주 케이블은 케이블 밴드의 볼트 축력에 대한 정기적인 유지 관리가 매우 중요하다. 현수교 케이블 밴드의 볼트 축력은 시간이 경과함에 따라 케이블 소선의 크리프 현상, 볼트의 릴렉세이션, 하중 변동, 케이블 소선의 재배열 등으로 인해 축력 감소 현상이 발생하게 된다. 본 연구에서는 국내 현수 교량(SR대교)의 케이블 밴드가 시간이 경과하면서 발생하는 축력 감소 현상에 대해 그 원인 및 감소량 등에 대한 현장 측정 및 이론적 검토, 안전율 검토, 장기적인 이력 관리 등을 수행하였다. 그 결과, 케이블 밴드 볼트 축력 감소는 주 케이블 소선에 사용된 아연 도금층의 소성 변형에 크게 영향받는 것을 확인하였으며, 이에 대한 이론적 체계 및 장기 이력 관리에 대한 적용성을 확립하였다.

On the NiTi wires in dampers for stayed cables

  • Torra, Vicenc;Carreras, Guillem;Casciati, Sara;Terriault, Patrick
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.353-374
    • /
    • 2014
  • Recent studies were dedicated to the realization of measurements on stay-cable samples of different geometry and static conditions as available at several facilities. The elaboration of the acquired data showed a a satisfactory efficacy of the dampers made of NiTi wires in smoothing the cable oscillations. A further attempt to investigate the applicability of the achieved results beyond the specific case-studies represented by the tested cable-stayed samples is herein pursued. Comparative studies are carried out by varying the diameter of the NiTi wire so that similar measurements can be taken also from laboratory steel cables of reduced size. Details of the preparation of the Ni-Ti wires are discussed with particular attention being paid to the suppression of the creep phenomenon. The resulting shape of the hysteretic cycle differs according to the wire diameter, which affects the order of the fitting polynomial to be used when trying to retrieve the experimental results by numerical analyses. For a NiTi wire of given diameter, an estimate of the amount of dissipated energy per cycle is given at low levels of maximum strain, which correspond to a fatigue fracture life of the order of millions of cycles. The dissipative capability is affected by both the temperature and the cycling frequency at which the tests are performed. Such effects are quantified and an ageing process is proposed in order to extend the working temperature range of the damper to cold weathers typical of the winter season in Northern Europe and Canada. A procedure for the simulation of the shape memory alloy behavior in lengthy cables by finite element analysis is eventually outlined.