• 제목/요약/키워드: Creep life

검색결과 270건 처리시간 0.02초

Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells

  • Kashkoli, Mosayeb Davoudi;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.349-362
    • /
    • 2018
  • This paper presents a semi-analytical solution for the creep analysis and life assessment of 304L austenitic stainless steel thick truncated conical shells using multilayered method based on the first order shear deformation theory (FSDT). The cone is subjected to the non-uniform internal pressure and temperature gradient. Damages are obtained in thick truncated conical shell using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The creep response of the material is described by Norton's law. In the multilayer method, the truncated cone is divided into n homogeneous disks, and n sets of differential equations with constant coefficients. This set of equations is solved analytically by applying boundary and continuity conditions between the layers. The results obtained analytically have been compared with the numerical results of the finite element method. The results show that the multilayered method based on FSDT has an acceptable amount of accuracy when one wants to obtain radial displacement, radial, circumferential and shear stresses. It is shown that non-uniform pressure has significant influences on the creep damages and remaining life of the truncated cone.

2.25Cr1Mo강의 크리프 손상에 대한 초음파 시험평가 (Ultrasonic Evaluation for the Creep Damage of 2.25Cr1Mo Steel)

  • 허광범;이인철;정계조;조용상;이상국;김재훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.31-36
    • /
    • 2000
  • High temperature and pressure materials in power plant are degraded by creep damage, if they are exposed to constant loads for long times, which occurs in the load bearing structures of pressurized components operating at elevated temperatures. Many conventional measurement techniques such as replica method, electric resistance method, and hardness test method for measuring creep damage have been used. So far, the replica method is mainly used for the Inspection of High temperature and pressure components. This technique is, however, restricted to applications at the surface of the testpieces and cannot be used to material inside. In this paper, ultrasonic evaluation for the detection of creep damage in the form of cavaties on grain boundaries or integranular microcracks are carried out. And the absolute measuring method of quantitative ultrasonic velocity technique for Cr-Mo material degradation is analyzed. As a result of ultrasonic tests for crept specimens, we find that the sound velocity is decreased as the increase of creep life fraction$({\Phi}_c)$ and also, confirmed that hardness is decreased as the increase of creep life fraction$({\Phi}_c)$ but the coefficient of ultrasonic attenuation is increased as the increase of creep life fraction$({\Phi}_c)$. Finally based on the result in this paper, it can be recognized that the ultrasonic techniques using velocities and attenuation coefficient factor are very useful non-destructive methods to evaluate the degree of material degradation in fossile power plants.

  • PDF

내열강 마찰용접재의 ISM에 의한 크리프 수명예측에 관한 연구 (Study on Creep Life Prediction by Initial Strain Method for Friction Welded Joints of Heat Resisting Steels)

  • 김헌경;김일석;이연탁;공유식;오세규
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.46-52
    • /
    • 2001
  • In this paper, the real-time prediction of high temperature creep life was carried out for the friction welded joints of dissimilar heat resisting steels (SUH3-SUH35). various life prediction method such as LMP (Larson_miller Parameter) and ISM (initial strain method) were applied. The creep behaviors of those steels and the welds under static load were examined by ISM combined with LMP at 500, 600 and $700^{\circ}C$, and the relationship between these two methods was investigated. A real-time creep lie (tr, hr) prediction equation by initial strain (${\varepsilon}_0$, %) under any creep stress ($\sigma$, MPa) at any high temperature (T, K) was developed as follows: $t_r={\alpha}{\varepsilon}_0^{\beta}{\sigma}^{-1}$ where, ${\phi}=16: {\alpha}=10^{51.412-0.104T+5.375{\times}10^5T^2}$, $ {\beta}=-83.989+0.180T-9.957{\times}10^{-5}T^2,{\phi}=20:$ ${\alpha}=10^{69.910-0.146T+7.744{\times}10^{-5}T^2$, ${\beta}=-51.442+0.105T-5.595{\times}10^{-5}T^2$ for SUH3-SUH35 friction weld of =16mm and 20mm, respectively.

  • PDF

0.5Tm 이하에서의 AZ31 마그네슘합금의 크리이프 변형과 단시간 파단수명예측 (Prediction of Creep Deformation and Short Time Rupture Life of AZ31 Magnesium Alloy below 0.5Tm)

  • 강대민;안정오;전성호;구양;심성보
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.558-563
    • /
    • 2008
  • The initial strain, the applied stress exponent, the activation energy, and rupture time in AZ31 magnesium alloy have been measured in order to predict the deformation mechanism and rupture life of creep over the temperature range of 423-443K. Creep tests were carried out under constant applied stress and temperature, and the lever type tester and automatic temperature controller was used for it, respectively. The experimental results showed that the applied stress exponent was about 9.74, and the activation energy for creep, 113.6KJ/mol was less than that of the self diffusion of Mg alloy including aluminum. From the results, the mechanism for creep deformation seems to be controlled by cross slip at the temperature range of 423-443K. Also the higher the applied stress and temperature, the higher the initial strain. And the rupture time for creep decreased as quadratic function with increasing the initial strain in double logarithmic axis.

핵융합로용 저방사화 철강재료(RAFs)의 크리프 특성평가 (Evaluation on Creep Properties of Reduced Activation Ferritic Steel(RAFs) for Nuclear Fusion Reactor)

  • 공유식;윤한기;남승훈
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.58-63
    • /
    • 2004
  • Reduced Activation Ferritic/Martensitic Steels (RAFs) are leading candidntes for structural materials of a D-T fusion reactor. One of the RAFs, JLF-l (9Cr-2W-V, Ta) has been developed and has shown to have good resistance against high-fluency neutrino irradiation and good phase stability. Recently, in order to clarify the strengthening mechanisms at high temperatures, a new scheme to improve high temperature mechanical properties is desired. Therefore, the test technique development of high temperature creep behaviors for this material is very important. In this paper, the creep properties and creep life prediction, using the Larson-Miler parameter method for JLF-l to be used for fusion reactor materials or other high temperature components, are presented at the elevated temperatures of 50$0^{\circ}C$, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and 704$^{\circ}C$. It was confirmed, experimentally and quantitatively, that a creep life predictive equation, at such various high temperatures, is well derived mr the LMP method.

ISM에 의한 발전용 고온 배관재료 2.25Cr1Mo강의 고온 크리프 수명 예측에 관한 연구

  • 이상국;정민화;오세규;송정근
    • 한국해양공학회지
    • /
    • 제12권2호통권28호
    • /
    • pp.71-78
    • /
    • 1998
  • In this report for the assessment of creep properties of high-temperature tube materials in power plants, the long-time($10^4$~105h) creep life prediction by ISM for 2.25Cr1Mo steel was studied. It was clarified experimentally and quantitatively that the newly developed long-time creep life prediction equation was very coincident with the actual experimental data with high confidence, and the model was $t_r=\alpha\varepsilon_0^{\beta}\sigma^{-1}$.

  • PDF

몬테카를로법을 이용한 고온 내압 요소의 크리프 균열성장 파손확률 평가 (Evaluation of Creep Crack Growth Failure Probability for High Temperature Pressurized Components Using Monte Carlo Simulation)

  • 이진상;윤기봉
    • 한국안전학회지
    • /
    • 제21권1호
    • /
    • pp.28-34
    • /
    • 2006
  • A procedure of estimating failure probability is demonstrated for a pressurized pipe of CrMo steel used at $538^{\circ}C$. Probabilistic fracture mechanics were employed considering variations of pressure loading, material properties and geometry. Probability density functions of major material variables were determined by statistical analyses of implemented data obtained by previous experiments. Distributions of the major variables were reflected in Monte Carlo simulation and failure probability as a function of operating time was determined. The creep crack growth life assessed by conventional deterministic approach was shown to be conservative compared with those obtained by probabilistic one. Sensitivity analysis for each input variable was also conducted to understand the most influencing variables to the residual life analysis. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

고온 폐열회수장치 튜브의 크리프 파단특성 평가 (Creep Rupture Life Prediction of High Temperature HRSG Tubes)

  • 김우중;김재훈;장중철;김범수;이기천
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.6-10
    • /
    • 2013
  • The Heat Recovery Steam Generator(HRSG) is a device recycling the exhaust gas of gas turbine in combined power and chemical plants. Since service temperatures was very high, the damage of HRSG tubes intensively occurred in superheater and reheater. The aim of this paper is to determine life and hardness relationship that addresses creep-rupture test and creep-interrupt test in modified 9Cr-1Mo steel. The measured life that consists of function of hardness was found to constant tendency.

중유발전소의 재열기관 균열 해석 (Analysis of Reheater Pipe Crack for Oil Power Plant)

  • 홍성호;홍성주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.643-647
    • /
    • 2003
  • Power plant Piping operating at elevated temperature often fails prematurely by the growth of microcracks under creep conditions. Therefore, the life assessment of high temperature components that contain cracks is an important technological problem. The mechanisms of crack growth in simple metals and alloys have been investigated using both mechanical and microstructural approaches. In this study, life prediction accounting for creep, crack growth and thermal stress is analyzed.

  • PDF

기공의 면적에 의한 크립 수명예측법 (The Creep Life Prediction Method by Cavity Area)

  • 홍성호
    • 대한기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.1455-1461
    • /
    • 1991
  • 본 연구에서는 Kachanov의 재료손상(material damage)모델을 이용하여 새로운 수명예측식을 만들고, 이 수명예측식의 타당성을 조사하기 위하여, 최근에 발표된 크 립 수명과 기공분포와의 실험결과와 비교하였다.