• 제목/요약/키워드: Creep Rupture Life

검색결과 107건 처리시간 0.029초

화력발전용 로터강의 초기 변형률법에 의한 장시간 크리프 수명 및 강도 예측 (Long Time Creep Strength and Life Prediction of Steam Turbine Rotor Steel by Initial Strain Method)

  • 오세규;정순억
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1321-1329
    • /
    • 1993
  • 본 연구에서는 이들보다 매우 간단한 IS법, 즉 초기 변형률법(ISM: initial strain method)에 의한 크리프 수명예측식을 고안하여, 현재 화력발전용 고압 로터강 에 사용되고 있는 1%Cr-Mo-V강과 발전소 효율향상을 위해 최근 국내최초로 개발된 12% Cr강에 대하여 도출하였고, 이 도출식이 앞에서 언급한 여러 파라메트에 의한 결과와 비교 평가하여 장시간 강도 및 수명예측식으로 사용될 수 있음을 입증하였다.

참조응력 개념에 의한 316LN 강의 크리프 해석 (Creep Analysis of Type 316LN Stainless Steel by Reference Stress Concept)

  • 김우곤;김대환;류우석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.123-128
    • /
    • 2001
  • The creep constants which are used to the reference stress equations of creep damage were obtained to type 316LN stainless steel, and their determining methods were described in detail. Typical Kachanov and Rabotnov(K-R) creep damage model was modified into the damage equations with reference stress concepts, and the modified equations were applied practically to type 316LN stainless steel. In order to determine the reference stress value, a series of high-temperature tensile tests and creep tests were accomplished at $550^{\circ}C$ and $600^{\circ}C$. By using the experimental creep data, the creep constants used in reference stress equations could be obtained to type 316LN stainless steel, and a creep curve on rupture strain was predicted. The reference stress concept on creep damage can be utilized easily as a design tool to predict creep life because the process, which is quantified by the measurement of voids or micro cracks during creep, is omitted.

  • PDF

몽크만·그랜트관계에 기초한 소형펀치 크리프시험 데이터와 일축 크리프시험 데이터의 관계 (Relationship Between Small-punch Creep Test Data and Uniaxial Creep Test Data based on the Monkman-Grant Relation)

  • 김범준;손일선;임병수
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.809-814
    • /
    • 2013
  • The relationship between the small-punch creep test and the conventional creep test was investigated experimentally using a method similar to that of the Monkman-Grant relationship. Uniaxial and small-punch creep rupture tests were carried out on 9Cr-2W ferritic steel (Commercial Grade 92 steel: X10CrWMoVNb 9-2) at elevated temperatures. From the relation derived in the same manner as the Monkman-Grant relation, a correlation between the displacement rate in response to the small-punch creep test and the strain rate in the uniaxial creep test was found, and the creep life was calculated using this relation. Furthermore, the failure modes of the small punch creep test specimens were investigated to show that the fracture was caused by creep.

P122강 열화재의 소형펀치 크리프 평가 및 미세조직 분석 (Small Punch Creep Evaluation and Microstructure Analysis in Aged P122 Steel)

  • 김범준;김문기;;임병수
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.19-27
    • /
    • 2010
  • This paper investigates the influence of aging time on creep properties via a small punch creep test and evaluates the microstructural change of P122 steel at $600^{\circ}C$. The area fraction of precipitates was quantitatively analyzed to identify the relationship between the creep rupture life and precipitates was coarsening behavior of precipitates along the grain boundaries was also investigated for various aging times. It is found that this coarsening behavior led to a loss of solution hardening and rewulte in a hardness drop and a reduction of creep life.

초내열합금 U720의 노출시험에 따른 크리프 특성 (Creep Properties of Superalloy Udimet 720 in relation to Exposed)

  • 공유식;오세규
    • 동력기계공학회지
    • /
    • 제5권2호
    • /
    • pp.57-62
    • /
    • 2001
  • Gas turbine performance is highly dependent on the engine performance which is closely related to the engine materials since they are exposed to severe working environments, i.e, high temperature and high stresses. For this reason, advanced materials with improved properties are required for the engine. The purpose of this research is to develop key materials technologies for aircraft industry and to tester domestic production of related parts. In this paper, the real-time prediction of high temperature creep strength and creep life for nickel-based superalloy Udimet 720(high-temperature and high-pressure the gas turbine engine materials) was performed on round-bar type specimens under pure load at the temperatures of 538, 649 and $704^{\circ}C$.

  • PDF

AZ3l 마그네슘 합금의 고온 크리이프 변형특성에 관한 연구 (A Study on the Creep Deformation Characteristic of AZ31 Mg Alloy at High Temperature)

  • 안정오;강대민;구양;심성보
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.186-192
    • /
    • 2005
  • The apparent activation energy Qc, the applied stress exponent n, and rupture life have been determined from creep test results of AZ31 Mg alloy over the temperature range of 200$^{\circ}C$ to 300$^{\circ}C$ and the stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller with data acquisition computer. At the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy fur the creep deformation was nearly equal to that of the self diffusion of Mg alloy including aluminum From the above results, at the temperature of $200^{\circ}C{\sim}220^{\circ}C$ the creep deformation for AZ31 Mg alloy seemed to be controlled by dislocation climb but controlled by dislocation glide at $280^{\circ}C{\sim}300^{\circ}C$ .And relationship beween rupture time and stress at around the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and again at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, respectively, appeard as fullow; log$\sigma$=-0.18(T+460)(logtr+21)+5.92, log$\sigma$ = -0.25(T+460)(logtr+21)+8.02 Also relationship beween rupture time and steady state creep rate appears as follow; ln$\dot$ =-0.881ntr-2.45

미소시험편을 이용한 고온 크리프 특성 평가법 개발 (Development of High Temperature Creep Properties Evaluation Method using Miniature Specimen)

  • 유효선;백승세;이송인;하정수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.43-48
    • /
    • 2000
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen$(10{\times}10{\times}0.5mm)$ has been described for the development of the newly semi-destructive creep test method for high temperature structural components such as headers and tubes of boiler turbine casino and rotor and reactor vessel. The SP-Creep testing technique has been applied to 2.25Cr-1Mo(STBA24) steel used widely as boiler tube material and the creep test temperature are varied at $550^{\circ}C{\sim}600^{\circ}C$. The overall deformations of SP-Creep curves are definitely depended with applied load and creep test temperature and show the creep behaviors of three steps like conventional uniaxial creep curves. The steady state creep rate${\delta}_{ss}$ of SP-Creep curve for miniaturized specimen increases with increasing creep temperature, but the exponential value with creep loading is decreased. The activation energy$(Q_{spc})$ during SP-Creep deformation with various test temperatures shows 605.7kJ/mol that is g.eater than 467.4kJ/mol reported in uniaxial creep test. This may be caused by the difference of stress states during creep deformation In two creep test. But from the experimental results, e.g. SP-Creep curve behaviors, the steady state creep rate${\delta}_{ss}$ with creep temperature, and the exponential value(n) with creep loading, it can be summarized that the SP-Creep test may be a useful test method to evaluate the creep properties of the heat resisting material.

  • PDF

고온배관 T-부의 응력해석 및 잔여수명평가 (Stress Analysis and Residual Life Assessment of T-piece of High Temperature Pipe)

  • 권양미;마영화;조성욱;윤기봉
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.34-41
    • /
    • 2005
  • For assessing residual lift of the steam pipe in fossil power plants, inspections and analysis are usually focused on the critical locations such as butt welds, elbows, Y-piece and T-piece of the steam pipes. In predicting the residual life of T-piece, determination of local stress near welds considering system load as well as internal pressure is not a simple problem. In this study, stress analysis of a T-piece pipe was conducted using a three-dimensional model which represents the T-piece of a domestic fossil power station. Elastic and elastic-creep analysis showed the maximum stress level and its location. Residual creep rupture life was also calculated using the stress analysis results. It was argued that the calculated life is reasonably same as the measured one. The stress analysis results also support life prediction methodology based on in-field replication technique.

참조응력을 이용한 316LN 스테인리스강의 크리프 해석 (Creep Analysis of Type 316LN Stainless Steel Using Reference Stress)

  • 김우곤;류우석
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2122-2129
    • /
    • 2002
  • Creep damage using a reference stress(RS) was analyzed for type 316LN stainless steel. The generalized K-R equation was reconstructed into the RS equation using a critical stress value $\sigma$. The RS equation was derived from the critical stress in failure time $t_f$ instead of material damage parameter $\omega$, which indicates the critical condition of collapse or approach to gross instability of materials during creep. For obtaining the reference stress, a series of creep tests and tensile tests were conducted with at 55$0^{\circ}C$ and $600^{\circ}C$. The stress-time data obtained from creep tests were applied to the RS equations to characterize the creep damage of type 316LN stainless steel. The value of creep constant r with stress levels was about 18 at 55$0^{\circ}C$ and 21 at $600^{\circ}C$. This value was almost similar with r = 24 in the K-R equation, which was obtained by using damage parameter $\omega$. Relationship plots of creep failure strain and life fraction $(t_f /t_r)$ were also obtained with different λ values. The RS equation was therefore more convenient than the generalized K-R equation, because the measuring process to quantify the damage parameter $\omega$ such as voids or micro cracks in crept materials was omitted. The RS method can be easily used by designers and plant operator as a creep design tool.

고온 수명평가를 위한 수정 크립-피로 손상모델의 걔발 (Development of Modified Creep-Fatigue Damage Model for High Temperature Life Prediction)

  • 박종주;석창성;김영진
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3424-3432
    • /
    • 1996
  • For mechanical system operating at high temperature, damage due to the interaction effect of creep and fatigue plays an important role. The objective of this paper is to develop a modified creep-fatigue damage model which separately analyzes the pure creep damage for hold time and the creep-fatigue interaction damage during startup and shutdown period. The creep damage was calculated by the general creep damage equation and the creep-fatigue interaction damage was calculated by the modified equation which is based on the frequency modified strain range method with strain rate term. In order to verify the proposed model, a service of high temperature low cycle fatigue tests were performed. The test specimens were made from inconel-718 superalloy and the test parameters were wave shape and hold time. A good agreement between the predicted lives based on the proposed model and experimentally obtained ones was observed.