• Title/Summary/Keyword: Creep Behavior

Search Result 590, Processing Time 0.025 seconds

The Long-term Behavior of CFT-Column (CFT 기둥의 장기거동 특성에 관한 연구)

  • 권승희;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.579-582
    • /
    • 1999
  • This paper represents the results of experiments designed to investigate the time-dependent response of concrete and steel tube in circular concrete-filled steel tubes, as are deployed extensively in high-rise building construction. The experiments were performed for creep of concrete and CFT column specimens with three loading cases. The creep coefficient and specific creep(unit creep) obtained from the test results were used for estimating and comparing the time-dependent response of each case. From these analyses, it is show that CFT-column has many merits for long-term behavior.

  • PDF

Creep Behavior Analysis of Pure Ti by Omega Method (Ti의 ${\Omega}$법을 이용한 고온 크리프 거동해석)

  • Cho, Ji-Hwa;Lee, Hen-Six;Jeong, Soon-Uk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.388-393
    • /
    • 2004
  • Creep behavior of Ti had been studied in a stress from 9.8 to 29.4 MPa and temperature rang from 873K to 973K with a special reference to tertiary creep. It was found that stress exponent of Ti was larger than that of the general pure metal and the compound metal. The relationship between true strain and strain rate in tertiary creep was appeared as the equation, $ln{\dot{e}}$ = $ln{\dot{e}}_{0}$ + ${\Omega}$ e Also, Apparent activation energy of was appeared as 274.92kJ/mol by using the equation ${\dot{\varepsilon}}_{0}$ = A ${\sigma }_{0}^{\ast_0}$ exp$(-Q_{0}/RT)$

  • PDF

A Study on the Thermal Creep Behavior of Granite (화강암의 열 크립 거동에 관한 연구)

  • 장명환;양형식
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • In order to get the information of the deformational behavior of rock masses with time in waste disposal repository, it is necessary to measure the relationships between stress and strain and time for temperature. A creep law is used in conjunction with the elastic moduli to calculate stress and displacement following waste emplacement. Exponential-time law's parameters consist of stress and temperature. In this study, thermal creep test was carried out for Whangdeung granite. The measured creep deformation behavior was well explained by exponential time law and generalized Kelvin's rheological model. Mechanicla coefficients for exponential-time creep law showed the clear tendency of temperature dependent while those for Kelvein's model didn't.

  • PDF

Sensitivity Study on Creep Behaviors of RPV under Severe Accident conditions (중대사고 조건하의 원자로용기 크리프 거동 민감도 분석 연구)

  • Kim, Tae Hyun;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • Reactor pressure vessel (RPV) under severe accident conditions accompanied by core melting is exposed to direct high-temperature thermal loads. Understanding the creep behavior of the material is one of the most important factors for evaluating the structural integrity at these conditions. While damage evaluation studies have been conducted on critical structures of nuclear power plants through finite element (FE) analyses considering creep behavior, for accurate creep damage evaluation, constitutive equations considered in the FE analyses may have different results depending on the time hardening and strain hardening models as well as the tertiary creep consideration. The purpose of this study is to evaluate the creep damage under severe accident conditions by using FE method for a representative domestic RPV material, SA508 Gr.3. The effect of material hardening models and constitutive equations which are the main variables were also investigated.

Prediction of ballooning and burst for nuclear fuel cladding with anisotropic creep modeling during Loss of Coolant Accident (LOCA)

  • Kim, Jinsu;Yoon, Jeong Whan;Kim, Hyochan;Lee, Sung-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3379-3397
    • /
    • 2021
  • In this study, a multi-physics modeling method was developed to analyze a nuclear fuel rod's thermo-mechanical behavior especially for high temperature anisotropic creep deformation during ballooning and burst occurring in Loss of Coolant Accident (LOCA). Based on transient heat transfer and nonlinear mechanical analysis, the present work newly incorporated the nuclear fuel rod's special characteristics which include gap heat transfer, temperature and burnup dependent material properties, and especially for high temperature creep with material anisotropy. The proposed method was tested through various benchmark analyses and showed good agreements with analytical solutions. From the validation study with a cladding burst experiment which postulates the LOCA scenario, it was shown that the present development could predict the ballooning and burst behaviors accurately and showed the capability to predict anisotropic creep behavior during the LOCA. Moreover, in order to verify the anisotropic creep methodology proposed in this study, the comparison between modeling and experiment was made with isotropic material assumption. It was found that the present methodology with anisotropic creep could predict ballooning and burst more accurately and showed more realistic behavior of the cladding.

Study on the Dislocation Behavior during Creep in 12% Chromium Steel (12% Cr 강의 크리이프중 전위거동에 관한 연구)

  • Oh, Sea-Wook;Jang, Yun-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.262-262
    • /
    • 1990
  • In order to check the effect of dislocation behavior on creep rate in 12% Chromium steel, 14 samples of different compositions were examined by creep rupture test, and subgrain sizes, distribution of dislocations and precipitates were checked. And, authors reviewed the behaviors of dislocations, the formation and growth of subgrains and precipitates during creep. The results are as the following: 1) Creep rates calculated by .epsilon. over dot = .rho.bv show 10-15% higher values than actual data measured. However, authors conclude that the density and velocity of dislocations together with subgrain size are important factors governing deformation during creep in 12% chromium steel. 2) The values of the strength of obstacles in the mobility of dislocations are more clearly depended on the effective stress in the range of $10{\pm}5kgf/mm^{2}$ and increase with the increase of temperature. 3) Creep rates decrease with the smaller sizes of subgrains formed and can result in the longer creep rupture lives(hours). The smaller subgrains can be made by forming shorter free gliding distances of dislocations with very fine precipitates formed in the matrix during creep by applying proper alloy design. 4) Dislocation mobility gets hindered by precipitates occurring, which are coarsened by the softening process governed by diffusion during long time creep.

Study on the Dislocation Behavior during Creep in 12% Chromium Steel (12% Cr 강의 크리이프중 전위거동에 관한 연구)

  • Oh, Sea-Wook;Jang, Yun-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.112-120
    • /
    • 1990
  • In order to check the effect of dislocation behavior on creep rate in 12% Chromium steel, 14 samples of different compositions were examined by creep rupture test, and subgrain sizes, distribution of dislocations and precipitates were checked. And, authors reviewed the behaviors of dislocations, the formation and growth of subgrains and precipitates during creep. The results are as the following: 1) Creep rates calculated by .epsilon. over dot = .rho.bv show 10-15% higher values than actual data measured. However, authors conclude that the density and velocity of dislocations together with subgrain size are important factors governing deformation during creep in 12% chromium steel. 2) The values of the strength of obstacles in the mobility of dislocations are more clearly depended on the effective stress in the range of $10{\pm}5kgf/mm^{2}$ and increase with the increase of temperature. 3) Creep rates decrease with the smaller sizes of subgrains formed and can result in the longer creep rupture lives(hours). The smaller subgrains can be made by forming shorter free gliding distances of dislocations with very fine precipitates formed in the matrix during creep by applying proper alloy design. 4) Dislocation mobility gets hindered by precipitates occurring, which are coarsened by the softening process governed by diffusion during long time creep.

  • PDF

Moment Magnifier Method for Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동을 고려한 모멘트 증대법)

  • 최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.211-216
    • /
    • 2000
  • Numerical studies were carried out to develop the moment magnifier method for long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. Nonlinear finite element analyses were performed for the numerical studies. Through the numerical studies, the long term behavior of the flat plate subjected to uniform or nonuniform floor load was investigated, and creep effects on the degradation of strength and stiffness of the slabs were examined. As the result, the creep factor was developed to epitomizes with creep effect on the flat plate. The moment magnifier method using the creep factor was developed for long-term behavior of flat plates. Also, the design examples are shown for verification of proposed design method.

  • PDF

A Rheological Study on Creep Behavior of Clays (점토(粘土)의 Creep 거동(擧動)에 관한 유변학적(流變學的) 연구(研究))

  • Lee, Chong Kue;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1981
  • Most clays under sustained load exhibit time-dependent deformation because of creep movement of soil particles and many investigators have attempted to relate their findings to the creep behavior of natural ground and to the long-term stability of slopes. Since the creep behavior of clays may assume a variety of forms depending on such factors as soil plasticity, activity and water content, it is difficult and complicated to analyse the creep behavior of clays. Rheological models composed of linear springs in combination with linear or nonlinear dashpots and sliders, are generally used for the mathematical description of the time-dependent behavior of soils. Most rheological models, however, have been proposed to simulate the behavior of secondary compression for saturated clays and few definitive data exist that can evaluate the behavior of non-saturated clays under the action of sustained stress. The clays change gradually from a solid state through plastic state to a liquid state with increasing water content, therefore, the rheological models also change. On the other hand, creep is time-dependent, and also the effect of thixotropy is time-function. Consequently, there may be certain correlations between creep behavior and the effects of thixotropy in compacted clays. In addition, the states of clay depend on water content and hence the height of the specimen under drained conditions. Futhermore, based on present and past studies, because immediate elastic deformation occurs instantly after the pressure increment without time-delayed behavior, the factor representing immediate elastic deformations in the rheological model is necessary. The investigation described in this paper, based on rheological model, is designed to identify the immediate elastic deformations and the effects of thixotropy and height of clay specimens with varing water content and stress level on creep deformations. For these purposes, the uniaxial drain-type creep tests were performed. Test results and data for three compacted clays have shown that a linear top spring is needed to account for immediate elastic deformations in the rheological model, and at lower water content below the visco-plastic limit, the effects of thixotropy and height of clay specimens can be represented by the proposed rheological model not considering the effects. Therefore, the rheological model does not necessitate the other factors representing these effects. On the other hand, at water content higher than the visco-plastic limit, although the state behavior of clays is visco-plastic or viscous flow at the beginning of the test, the state behavior, in the case of the lower height sample, does not represent the same behavior during the process of the test, because of rapid drainage. In these cases, the rheological model does not coincide with the model in the case of the higher specimens.

  • PDF

Effects of Heat Treatment on Secondary Phase Formation and Nanoindentation Creep Behavior of Nanocrystalline CoCrFeMnNi High-entropy alloy (나노결정립 CoCrFeMnNi 고엔트로피합금의 열처리에 따른 이차상 형성 및 나노압입 크리프 거동 변화 연구)

  • Dong-Hyun Lee;Jae-il Jang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.128-136
    • /
    • 2023
  • In this study, the effects of heat treatment on the nano-scale creep behavior of CoCrFeMnNi high-entropy alloy (HEA) processed by high-pressure torsion (HPT) was investigated through nanoindentation technique. Nanoindentation experiments with a Berkovich indenter were performed on HPT-processed alloy subjected to heat treatment at 450℃, revealing that the hardness of the HPT-processed alloy (HPT sample) significantly increased with the heat treatment time. The heat treatment-induced microstructural change in HPT-processed alloy was analyzed using transmission electron microscopy, which showed the nano-sized Cr-, NiMn-, and FeCo-rich phases were formed in the HPT-processed alloy subjected to 10 hours of heat treatment (HPT+10A sample). To compare the creep behavior of HPT and HPT+10A samples, constant load nanoindentation creep experiments were performed using spherical indentation indenters with two different radii. It was revealed that the predominant mechanism for creep highly depended on the applied stress level. At low stress level, both HPT and HPT+10A samples were dominated by Coble creep. At high stress level, however, the mechanism transformed to dislocation creep for HPT sample, but continued to be Coble creep for HPT+10A sample, leading to higher creep resistance in the HPT+10A sample.