• Title/Summary/Keyword: Credit ratings

Search Result 65, Processing Time 0.024 seconds

Differences among Credit Rating Agencies and the Information Environment

  • PARK, Hyunjun;YOO, Youngtae
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.2
    • /
    • pp.25-32
    • /
    • 2019
  • In the Korean capital market, there are three credit rating agencies. Potential credit ratings based on credibility in the financial market are calculated independently for each rating agency. It often happens that despite the fact that the grades of the rating agencies are the same and have the same rating system, their actual ratings are different, even for the same firm. In such circumstances, investors may wonder why. In this study, we assume that the cause is the information environment in which the company operates. The credit ratings of rating agencies are mainly classified into bonds or commercial papers. The bonds are rated primarily for long-term of three years or more, and commercial papers specify ratings for less than one year. The information environment to be verified in this study was observed with a commercial paper. Under the assumption the larger the analyst following is, the more transparent is the information environment, we analyzed the influence of the number of analysts following on the degree to which ratings conflicted among credit rating agencies. The results of our analysis confirmed that opinion conflict among credit rating agencies is clearly reduced for companies with good information environments.

Comparison of Efficiency of Manufacturing Companies Listed on KOSPI Using Metafrontier: Focusing on ESG Ratings (메타프론티어를 이용하여 상장 제조업의 효율성 비교: ESG 등급을 중심으로)

  • Chanhi Cho;Hyoung-Yong Lee
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.1-22
    • /
    • 2023
  • Existing studies on mixed ratings that combine ESG ratings and credit ratings have been rare. Through meta-frontier analysis, this study examines the relationship between the prime and non-prime groups in ESG ratings, credit ratings, and mixed ratings that consider ESG ratings and credit ratings at the same time. Efficiency was compared. Meta-frontier analysis was used to compare the efficiency of 143 listed manufacturing companies in Korea between the prime and non-prime groups based on the ESG ratings assigned to them by KCGS and the credit ratings assigned by Korea's three major credit rating agencies. As a result of this study, first, the meta-efficiency of the prime mixed-grade group was statistically more efficient than the non-prime mixed-grade group under the variable return scale (VRS) assumption. Second, the prime ESG rating group had a relatively higher proportion of scale inefficiency than the non-prime ESG rating group. Third, in terms of economies of scale, the prime credit rating group had a higher proportion of diminishing returns to scale (DRS) than the non-prime credit rating group. This study will help companies interested in sustainability management to do ESG management.

Developing Corporate Credit Rating Models Using Business Failure Probability Map and Analytic Hierarchy Process (부도확률맵과 AHP를 이용한 기업 신용등급 산출모형의 개발)

  • Hong, Tae-Ho;Shin, Taek-Soo
    • The Journal of Information Systems
    • /
    • v.16 no.3
    • /
    • pp.1-20
    • /
    • 2007
  • Most researches on the corporate credit rating are generally classified into the area of bankruptcy prediction and bond rating. The studies on bankruptcy prediction have focused on improving the performance in binary classification problem, since the criterion variable is categorical, bankrupt or non-bankrupt. The other studies on bond rating have predicted the credit ratings, which was already evaluated by bond rating experts. The financial institute, however, should perform effective loan evaluation and risk management by employing the corporate credit rating model, which is able to determine the credit of corporations. Therefore, this study presents a corporate credit rating method using business failure probability map(BFPM) and AHP(Analytic Hierarchy Process). The BFPM enables us to rate the credit of corporations according to business failure probability and data distribution or frequency on each credit rating level. Also, we developed AHP model for credit rating using non-financial information. For the purpose of completed credit rating model, we integrated the BFPM and the AHP model using both financial and non-financial information. Finally, the credit ratings of each firm are assigned by our proposed method. This method will be helpful for the loan evaluators of financial institutes to decide more objective and effective credit ratings.

  • PDF

The Effect of Customer Satisfaction on Corporate Credit Ratings (고객만족이 기업의 신용평가에 미치는 영향)

  • Jeon, In-soo;Chun, Myung-hoon;Yu, Jung-su
    • Asia Marketing Journal
    • /
    • v.14 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • Nowadays, customer satisfaction has been one of company's major objectives, and the index to measure and communicate customer satisfaction has been generally accepted among business practices. The major issues of CSI(customer satisfaction index) are three questions, as follows: (a)what level of customer satisfaction is tolerable, (b)whether customer satisfaction and company performance has positive causality, and (c)what to do to improve customer satisfaction. Among these, the second issue is recently attracting academic research in several perspectives. On this study, the second issue will be addressed. Many researchers including Anderson have regarded customer satisfaction as core competencies, such as brand equity, customer equity. They want to verify following causality "customer satisfaction → market performance(market share, sales growth rate) → financial performance(operating margin, profitability) → corporate value performance(stock price, credit ratings)" based on the process model of marketing performance. On the other hand, Insoo Jeon and Aeju Jeong(2009) verified sequential causality based on the process model by the domestic data. According to the rejection of several hypotheses, they suggested the balance model of marketing performance as an alternative. The objective of this study, based on the existing process model, is to examine the causal relationship between customer satisfaction and corporate value performance. Anderson and Mansi(2009) proved the relationship between ACSI(American Customer Satisfaction Index) and credit ratings using 2,574 samples from 1994 to 2004 on the assumption that credit rating could be an indicator of a corporate value performance. The similar study(Sangwoon Yoon, 2010) was processed in Korean data, but it didn't confirm the relationship between KCSI(Korean CSI) and credit ratings, unlike the results of Anderson and Mansi(2009). The summary of these studies is in the Table 1. Two studies analyzing the relationship between customer satisfaction and credit ratings weren't consistent results. So, in this study we are to test the conflicting results of the relationship between customer satisfaction and credit ratings based on the research model considering Korean credit ratings. To prove the hypothesis, we suggest the research model as follows. Two important features of this model are the inclusion of important variables in the existing Korean credit rating system and government support. To control their influences on credit ratings, we included three important variables of Korean credit rating system and government support, in case of financial institutions including banks. ROA, ER, TA, these three variables are chosen among various kinds of financial indicators since they are the most frequent variables in many previous studies. The results of the research model are relatively favorable : R2, F-value and p-value is .631, 233.15 and .000 respectively. Thus, the explanatory power of the research model as a whole is good and the model is statistically significant. The research model has good explanatory power, the regression coefficients of the KCSI is .096 as positive(+) and t-value and p-value is 2.220 and .0135 respectively. As a results, we can say the hypothesis is supported. Meanwhile, all other explanatory variables including ROA, ER, log(TA), GS_DV are identified as significant and each variables has a positive(+) relationship with CRS. In particular, the t-value of log(TA) is 23.557 and log(TA) as an explanatory variables of the corporate credit ratings shows very high level of statistical significance. Considering interrelationship between financial indicators such as ROA, ER which include total asset in their formula, we can expect multicollinearity problem. But indicators like VIF and tolerance limits that shows whether multicollinearity exists or not, say that there is no statistically significant multicollinearity in all the explanatory variables. KCSI, the main subject of this study, is a statistically significant level even though the standardized regression coefficients and t-value of KCSI is .055 and 2.220 respectively and a relatively low level among explanatory variables. Considering that we chose other explanatory variables based on the level of explanatory power out of many indicators in the previous studies, KCSI is validated as one of the most significant explanatory variables for credit rating score. And this result can provide new insights on the determinants of credit ratings. However, KCSI has relatively lower impact than main financial indicators like log(TA), ER. Therefore, KCSI is one of the determinants of credit ratings, but don't have an exceedingly significant influence. In addition, this study found that customer satisfaction had more meaningful impact on corporations of small asset size than those of big asset size, and on service companies than manufacturers. The findings of this study is consistent with Anderson and Mansi(2009), but different from Sangwoon Yoon(2010). Although research model of this study is a bit different from Anderson and Mansi(2009), we can conclude that customer satisfaction has a significant influence on company's credit ratings either Korea or the United State. In addition, this paper found that customer satisfaction had more meaningful impact on corporations of small asset size than those of big asset size and on service companies than manufacturers. Until now there are a few of researches about the relationship between customer satisfaction and various business performance, some of which were supported, some weren't. The contribution of this study is that credit rating is applied as a corporate value performance in addition to stock price. It is somewhat important, because credit ratings determine the cost of debt. But so far it doesn't get attention of marketing researches. Based on this study, we can say that customer satisfaction is partially related to all indicators of corporate business performances. Practical meanings for customer satisfaction department are that it needs to actively invest in the customer satisfaction, because active investment also contributes to higher credit ratings and other business performances. A suggestion for credit evaluators is that they need to design new credit rating model which reflect qualitative customer satisfaction as well as existing variables like ROA, ER, TA.

  • PDF

Does Market Performance Influence Credit Risk? (기업의 시장성과는 신용위험에 영향을 미치는가?)

  • Lim, Hyoung-Joo;Mali, Dafydd
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.81-90
    • /
    • 2016
  • This study aims to investigate the association between stock performance and credit ratings, and credit rating changes using a sample of 1,691 KRX firm-years that acquire equity in the form of long-term bonds from 2002 to 2013. Previous U.S. literature is mixed with regard to the relation between credit ratings and stock price. On one hand, there is evidence of a positive relation between credit ratings and stock prices, an anomaly established in U.S. studies. On the other hand, the CAPM model suggests a negative relation between stock prices and credit ratings, implying that investors expect financial rewards for bearing additional risk. To our knowledge, we are the first to examine the relationship between stock price and default risk proxied by credit ratings in period t+1. We find a negative (positive) relation between credit ratings (risk) in period t+1 and stock returns in period t, suggesting that credit rating agencies do not consider stock returns as a metric with the potential to influence default risk. Our results suggest that market participants may prefer firms with higher credit risk because of expected higher returns.

The effects of dominating large shareholders and foreign blockholders on the Korean firms' credit ratings (한국기업에서 지배대주주와 외국인주주가 신용등급에 미치는 영향)

  • Kim, Choong-Hwan;Gong, Jaisik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.129-136
    • /
    • 2014
  • This paper examines the effects of dominating large shareholders and foreign blockholders on credit ratings. An effective governance mechanism is expected to lead to higher credit ratings through its impact on default risk of the firm. Our results show that dominating large shareholders have an adverse impact on credit ratings of domestic firms on the level of its statistical significance. Foreign shareholders are positively associated with credit ratings, contributing to the higher credit worthness of domestic firms.

The Effect of Management and Ownership Share by Family Governance on the Credit Ratings of Corporate Bonds (가족지배에 의한 경영과 소유지분이 회사채신용등급에 미치는 영향)

  • Kim, Seon-Gu
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.175-182
    • /
    • 2019
  • The purpose of this study is to test whether credit rating agencies highly evaluate the credit ratings of corporate bonds based upon management participation and ownership share by family governance in ownership structure forms. The samples of this study for empirical analysis were 1,449 non-financial companies listed on Korean Exchange from 2011 to 2016, over whose firm/year data this study conducted regression analysis. The results of empirical analysis in this study are as follows. First, family businesses had positive effects on the evaluation of corporate credit ratings. Second, if the ownership share of family businesses was higher, corporate credit ratings were higher. This result means that high ownership share in family businesses has very positive effects on the credit ratings of related businesses. It is meaningful that this study tested the effect that family businesses can alleviate agency problems and reduce information asymmetry. Furthermore, it is also academically meaningful that this study can contribute to future studies on the role of ownership structure.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

The Effects of Technology Innovation and Employment on Start-ups' Credit Ratings: Asymmetric Information Hypothesis vs Competence Hypothesis (기술혁신 활동과 고용 수준이 소규모 창업기업에 대한 신용평가에 미치는 영향: 비대칭적 정보 가설 vs. 역량 가설)

  • Choi, Young-Cheol;Yang, Taeho;Kim, Sunghwan
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.2
    • /
    • pp.193-208
    • /
    • 2020
  • In this study, we investigate the effects of technology innovation investments and employment on credit ratings of very small start-up businesses using the data period of 2009 till 2015 test two hypotheses: asymmetric information hypothesis or competence hypothesis. We use financial and non-financial data of 51,903 observations of 12,028 small businesses from a database of a commercial bank and fixed effects panel models and two-stage instrumental variable models. We find that in the short-run small size startups show lower credit ratings than non-startups, and that both technology innovation activities and employment capability improve their credit ratings. In the long-run, technology innovation investments do not improve their credit ratings of later years while employment capability improve their credit ratings of the subsequent year. In addition, the age of startups improves their credit ratings of the current year and until the subsequent two years while employee productivity, fixed ratio and ROA positively affect their credit ratings for up to three years. However, short-term and overall debt ratios, cost of borrowings and firm-size negatively affect their credit ratings for up to three years. The results of the study on credit ratings suggest that credit rating agencies seem to consider both technology innovation activities and employment capability in the credit ratings of small start-ups as 'competence factors' rather than 'asymmetric information factors' with inefficiency and cost burdens. The results also suggest that we must find ways to reflect properly the severe asymmetric information of the early-stage start-ups, and technology innovation activities and employment capability in the credit rating formula.

The Influence of Credit Scores on Dividend Policy: Evidence from the Korean Market

  • KIM, Taekyu;KIM, Injoong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.2
    • /
    • pp.33-42
    • /
    • 2020
  • The paper investigates the mechanism through which corporate credit ratings affect dividend payments by decomposing the mean difference of dividends into a part that is explained by the determinants of dividends and a residual part that is contributed by the pure credit group effect, in the framework of the traditional dividend model of Fama and French (2001). Historically, better credit rated firms have shown consistently higher propensity to pay dividends especially during the economic crisis period. According to the counter-factual decomposition technique of Jann (2008), better rated firms are more responsive to the firm characteristics that have positive impact on dividends and poor rated firms are more responsive to the negative dividend predictors. As a result, good (bad) credit ratings make corporate managers become more bold (timid) in their dividend payments and they tend to pay more (less) dividends than what their firm characteristics prescribe. The degree of information asymmetry increases for the poor group firms during crisis periods and they attempt to reserve more cash in preparation for future investments. The decomposition results suggest that the credit group effect can potentially exceed the effect of firm characteristics because firms of different credit ratings can respond to the very same firm characteristics in a different manner.