• Title/Summary/Keyword: Credit rating model

Search Result 68, Processing Time 0.031 seconds

Some Issues on Criterion for Kolmogorov-Smirnov Test in Credit Rating Model Validation (신용평가모형에서 콜모고로프-스미르노프 검정기준의 문제점)

  • Park, Yong-Seok;Hong, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.1013-1026
    • /
    • 2008
  • Kolmogorov-Smirnov(K-S) statistic has been widely used for the model validation of credit rating models. Validation criteria for the K-S statistic is empirically used at the levels of 0.3 or 0.4 which are much larger than the critical values of K-S test statistic. We examine whether these criteria are reasonable and appropriate through the simulations according to various sample sizes, type II error rates, and the ratio of bads among data. The simulation results say that the currently used validation criteria are too lower than values of K-S statistics obtained from any credit rating models in Korea, so that any credit rating models have good discriminatory power. In this work, alternative criteria of K-S statistic are proposed as critical levels under realistic situations of credit rating models.

Corporate credit rating prediction using support vector machines

  • Lee, Yong-Chan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.571-578
    • /
    • 2005
  • Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, the researcher uses a grid-search technique using 5-fold cross-validation to find out the optimal parameter values of kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, the researcher compares its performance with those of multiple discriminant analysis (MDA), case-based reasoning (CBR), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.

  • PDF

LSTM-based Deep Learning for Time Series Forecasting: The Case of Corporate Credit Score Prediction (시계열 예측을 위한 LSTM 기반 딥러닝: 기업 신용평점 예측 사례)

  • Lee, Hyun-Sang;Oh, Sehwan
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.241-265
    • /
    • 2020
  • Purpose Various machine learning techniques are used to implement for predicting corporate credit. However, previous research doesn't utilize time series input features and has a limited prediction timing. Furthermore, in the case of corporate bond credit rating forecast, corporate sample is limited because only large companies are selected for corporate bond credit rating. To address limitations of prior research, this study attempts to implement a predictive model with more sample companies, which can adjust the forecasting point at the present time by using the credit score information and corporate information in time series. Design/methodology/approach To implement this forecasting model, this study uses the sample of 2,191 companies with KIS credit scores for 18 years from 2000 to 2017. For improving the performance of the predictive model, various financial and non-financial features are applied as input variables in a time series through a sliding window technique. In addition, this research also tests various machine learning techniques that were traditionally used to increase the validity of analysis results, and the deep learning technique that is being actively researched of late. Findings RNN-based stateful LSTM model shows good performance in credit rating prediction. By extending the forecasting time point, we find how the performance of the predictive model changes over time and evaluate the feature groups in the short and long terms. In comparison with other studies, the results of 5 classification prediction through label reclassification show good performance relatively. In addition, about 90% accuracy is found in the bad credit forecasts.

Feature Selection for Multi-Class Support Vector Machines Using an Impurity Measure of Classification Trees: An Application to the Credit Rating of S&P 500 Companies

  • Hong, Tae-Ho;Park, Ji-Young
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.43-58
    • /
    • 2011
  • Support vector machines (SVMs), a machine learning technique, has been applied to not only binary classification problems such as bankruptcy prediction but also multi-class problems such as corporate credit ratings. However, in general, the performance of SVMs can be easily worse than the best alternative model to SVMs according to the selection of predictors, even though SVMs has the distinguishing feature of successfully classifying and predicting in a lot of dichotomous or multi-class problems. For overcoming the weakness of SVMs, this study has proposed an approach for selecting features for multi-class SVMs that utilize the impurity measures of classification trees. For the selection of the input features, we employed the C4.5 and CART algorithms, including the stepwise method of discriminant analysis, which is a well-known method for selecting features. We have built a multi-class SVMs model for credit rating using the above method and presented experimental results with data regarding S&P 500 companies.

Comparisons of the corporate credit rating model power under various conditions (기준값 변화에 따른 기업신용평가모형 성능 비교)

  • Ha, Jeongcheol;Kim, Soojin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1207-1216
    • /
    • 2015
  • This study aims to compare the model power in developing corporate credit rating models and to suggest a good way to build models based on the characteristic of data. Among many measurement methods, AR is used to measure the model power under various conditions. SAS/MACRO is in use for similar repetitions to reduce time to build models under several combination of conditions. A corporate credit rating model is composed of two sub-models; a credit scoring model and a default prediction model. We verify that the latter performs better than the former under various conditions. From the result of size comparisons, models of large size corporate are more powerful and more meaningful in financial viewpoint than those of small size corporate. As a corporate size gets smaller, the gap between sub-models becomes huge and the effect of outliers becomes serious.

The Effect of Customer Satisfaction on Corporate Credit Ratings (고객만족이 기업의 신용평가에 미치는 영향)

  • Jeon, In-soo;Chun, Myung-hoon;Yu, Jung-su
    • Asia Marketing Journal
    • /
    • v.14 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • Nowadays, customer satisfaction has been one of company's major objectives, and the index to measure and communicate customer satisfaction has been generally accepted among business practices. The major issues of CSI(customer satisfaction index) are three questions, as follows: (a)what level of customer satisfaction is tolerable, (b)whether customer satisfaction and company performance has positive causality, and (c)what to do to improve customer satisfaction. Among these, the second issue is recently attracting academic research in several perspectives. On this study, the second issue will be addressed. Many researchers including Anderson have regarded customer satisfaction as core competencies, such as brand equity, customer equity. They want to verify following causality "customer satisfaction → market performance(market share, sales growth rate) → financial performance(operating margin, profitability) → corporate value performance(stock price, credit ratings)" based on the process model of marketing performance. On the other hand, Insoo Jeon and Aeju Jeong(2009) verified sequential causality based on the process model by the domestic data. According to the rejection of several hypotheses, they suggested the balance model of marketing performance as an alternative. The objective of this study, based on the existing process model, is to examine the causal relationship between customer satisfaction and corporate value performance. Anderson and Mansi(2009) proved the relationship between ACSI(American Customer Satisfaction Index) and credit ratings using 2,574 samples from 1994 to 2004 on the assumption that credit rating could be an indicator of a corporate value performance. The similar study(Sangwoon Yoon, 2010) was processed in Korean data, but it didn't confirm the relationship between KCSI(Korean CSI) and credit ratings, unlike the results of Anderson and Mansi(2009). The summary of these studies is in the Table 1. Two studies analyzing the relationship between customer satisfaction and credit ratings weren't consistent results. So, in this study we are to test the conflicting results of the relationship between customer satisfaction and credit ratings based on the research model considering Korean credit ratings. To prove the hypothesis, we suggest the research model as follows. Two important features of this model are the inclusion of important variables in the existing Korean credit rating system and government support. To control their influences on credit ratings, we included three important variables of Korean credit rating system and government support, in case of financial institutions including banks. ROA, ER, TA, these three variables are chosen among various kinds of financial indicators since they are the most frequent variables in many previous studies. The results of the research model are relatively favorable : R2, F-value and p-value is .631, 233.15 and .000 respectively. Thus, the explanatory power of the research model as a whole is good and the model is statistically significant. The research model has good explanatory power, the regression coefficients of the KCSI is .096 as positive(+) and t-value and p-value is 2.220 and .0135 respectively. As a results, we can say the hypothesis is supported. Meanwhile, all other explanatory variables including ROA, ER, log(TA), GS_DV are identified as significant and each variables has a positive(+) relationship with CRS. In particular, the t-value of log(TA) is 23.557 and log(TA) as an explanatory variables of the corporate credit ratings shows very high level of statistical significance. Considering interrelationship between financial indicators such as ROA, ER which include total asset in their formula, we can expect multicollinearity problem. But indicators like VIF and tolerance limits that shows whether multicollinearity exists or not, say that there is no statistically significant multicollinearity in all the explanatory variables. KCSI, the main subject of this study, is a statistically significant level even though the standardized regression coefficients and t-value of KCSI is .055 and 2.220 respectively and a relatively low level among explanatory variables. Considering that we chose other explanatory variables based on the level of explanatory power out of many indicators in the previous studies, KCSI is validated as one of the most significant explanatory variables for credit rating score. And this result can provide new insights on the determinants of credit ratings. However, KCSI has relatively lower impact than main financial indicators like log(TA), ER. Therefore, KCSI is one of the determinants of credit ratings, but don't have an exceedingly significant influence. In addition, this study found that customer satisfaction had more meaningful impact on corporations of small asset size than those of big asset size, and on service companies than manufacturers. The findings of this study is consistent with Anderson and Mansi(2009), but different from Sangwoon Yoon(2010). Although research model of this study is a bit different from Anderson and Mansi(2009), we can conclude that customer satisfaction has a significant influence on company's credit ratings either Korea or the United State. In addition, this paper found that customer satisfaction had more meaningful impact on corporations of small asset size than those of big asset size and on service companies than manufacturers. Until now there are a few of researches about the relationship between customer satisfaction and various business performance, some of which were supported, some weren't. The contribution of this study is that credit rating is applied as a corporate value performance in addition to stock price. It is somewhat important, because credit ratings determine the cost of debt. But so far it doesn't get attention of marketing researches. Based on this study, we can say that customer satisfaction is partially related to all indicators of corporate business performances. Practical meanings for customer satisfaction department are that it needs to actively invest in the customer satisfaction, because active investment also contributes to higher credit ratings and other business performances. A suggestion for credit evaluators is that they need to design new credit rating model which reflect qualitative customer satisfaction as well as existing variables like ROA, ER, TA.

  • PDF

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Nonparametric homogeneity tests of two distributions for credit rating model validation (신용평가모형에서 두 분포함수의 동일성 검정을 위한 비모수적인 검정방법)

  • Hong, Chong-Sun;Kim, Ji-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.261-272
    • /
    • 2009
  • Kolmogorov-Smirnov (K-S) statistic has been widely used for testing homogeneity of two distributions in the credit rating models. Joseph (2005) used K-S statistic to obtain validation criteria which is most well-known. There are other homogeneity test statistics such as the Cramer-von Mises, Anderson-Darling, and Watson statistics. In this paper, these statistics are introduced and applied to obtain criterion of these statistics by extending Joseph (2005)'s work. Another set of alternative criterion is suggested according to various sample sizes, type a error rates, and the ratios of bads and goods by using the simulated data under the similar situation as real credit rating data. We compare and explore among Joseph's criteria and two sets of the proposed criterion and discuss their applications.

  • PDF

Research on the E-Commerce Credit Scoring Model Using the Gaussian Density Function

  • Xiao, Qiang;He, Rui-chun;Zhang, Wei
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.173-183
    • /
    • 2015
  • At present, it is simple to the electronic commerce credit scoring model, as a brush credit phenomenon in E-commerce has emerged. This phenomenon affects the judgment of consumers and hinders the rapid development of E-commerce. In this paper, that E-commerce credit evaluation model that uses a Gaussian density function is put forward by density test and the analysis for the anomalies of E-commerce credit rating, it can be fond out the abnormal point in credit scoring, these points were calculated by nonlinear credit scoring algorithm, thus it can effectively improve the current E-commerce credit score, and enhance the accuracy of E-commerce credit score.

Validation Comparison of Credit Rating Models Using Box-Cox Transformation

  • Hong, Chong-Sun;Choi, Jeong-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.789-800
    • /
    • 2008
  • Current credit evaluation models based on financial data make use of smoothing estimated default ratios which are transformed from each financial variable. In this work, some problems of the credit evaluation models developed by financial experts are discussed and we propose improved credit evaluation models based on the stepwise variable selection method and Box-Cox transformed data whose distribution is much skewed to the right. After comparing goodness-of-fit tests of these models, the validation of the credit evaluation models using statistical methods such as the stepwise variable selection method and Box-Cox transformation function is explained.

  • PDF