• Title/Summary/Keyword: Credit Rating

Search Result 176, Processing Time 0.019 seconds

Some Issues on Criterion for Kolmogorov-Smirnov Test in Credit Rating Model Validation (신용평가모형에서 콜모고로프-스미르노프 검정기준의 문제점)

  • Park, Yong-Seok;Hong, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.1013-1026
    • /
    • 2008
  • Kolmogorov-Smirnov(K-S) statistic has been widely used for the model validation of credit rating models. Validation criteria for the K-S statistic is empirically used at the levels of 0.3 or 0.4 which are much larger than the critical values of K-S test statistic. We examine whether these criteria are reasonable and appropriate through the simulations according to various sample sizes, type II error rates, and the ratio of bads among data. The simulation results say that the currently used validation criteria are too lower than values of K-S statistics obtained from any credit rating models in Korea, so that any credit rating models have good discriminatory power. In this work, alternative criteria of K-S statistic are proposed as critical levels under realistic situations of credit rating models.

Determining Personal Credit Rating through Voice Analysis: Case of P2P loan borrowers

  • Lee, Sangmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3627-3641
    • /
    • 2021
  • Fintech, which stands for financial technology, is growing fast globally since the economic crisis hit the United States in 2008. Fintech companies are striving to secure a competitive advantage over existing financial services by providing efficient financial services utilizing the latest technologies. Fintech companies can be classified into several areas according to their business solutions. Among the Fintech sector, peer-to-peer (P2P) lending companies are leading the domestic Fintech industry. P2P lending is a method of lending funds directly to individuals or businesses without an official financial institution participating as an intermediary in the transaction. The rapid growth of P2P lending companies has now reached a level that threatens secondary financial markets. However, as the growth rate increases, so does the potential risk factor. In addition to government laws to protect and regulate P2P lending, further measures to reduce the risk of P2P lending accidents have yet to keep up with the pace of market growth. Since most P2P lenders do not implement their own credit rating system, they rely on personal credit scores provided by credit rating agencies such as the NICE credit information service in Korea. However, it is hard for P2P lending companies to figure out the intentional loan default of the borrower since most borrowers' credit scores are not excellent. This study analyzed the voices of telephone conversation between the loan consultant and the borrower in order to verify if it is applicable to determine the personal credit score. Experimental results show that the change in pitch frequency and change in voice pitch frequency can be reliably identified, and this difference can be used to predict the loan defaults or use it to determine the underlying default risk. It has also been shown that parameters extracted from sample voice data can be used as a determinant for classifying the level of personal credit ratings.

Feasibility Study of Credit Rating Upgrading through Technology Evaluation of SMEs (중소기업의 기술력평가를 통한 신용등급 상향의 타당성 연구)

  • Kim, Jaechun;Son, Seokhyun
    • Journal of Technology Innovation
    • /
    • v.26 no.2
    • /
    • pp.129-149
    • /
    • 2018
  • Technology finance is an area in which financial authorities have introduced and implemented a strong policy will for the advancement of the financial industry and the development of SMEs. As a result, the Bank's own technology evaluation was conducted from September 2016. Technically superior companies are upgrading their credit ratings, and as a result, they benefit from financial transactions as much as their higher credit ratings through technology evaluation. Based on the data generated during this process, we analyze the degree to which credit ratings was upgraded by technology evaluation. The pre study handles 406 data from KEB Hana Bank's technology evaluation conducted in the second half of 2016. As a result of combining the credit rating with the calculated technology rating, J58 'Publishing Activities' technology-credit rating is raised by 1.05 rating, which is the highest, and C10 'Manufacture of Food Products' is the second highest. As a result, we were able to identify the sectors that benefited from the technology evaluation and confirmed the usefulness of technology evaluation by industry(KSIC). To expanding the study, 2,719 companies evaluated during the entire period were analyzed by technology grade, business experience and promising growth industry code. As a result of the analysis, technological power over T-4 grade companies had the highest credit rating upgrades. The companies belonging to promising growth industries designated for efficiency of policy support, it is confirm that the support of the promising business type was useful because the credit grade was upgraded through technology evaluation. The validity of the technology evaluation based on the five-year business experience was found to be insignificant. In the future, it will be possible to maximize the support effect by concentration on the companies with over T-4 grade and growth potential companies when supporting SMEs.

A Study on Effects of Corporate Governance Information on Credit Financial Ratings (기업지배구조정보가 신용재무평점에 미치는 영향)

  • Kim, Dong-Young;Kim, Dong-Il;Seo, Byoung-Woo
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.105-113
    • /
    • 2015
  • If the watchdog role of good corporate governance, corporate executives and reduce agency costs and information asymmetries. Corporate governance score higher because enterprise internal control systems and financial reporting system is well equipped with the company management is enabled and corporate performance is higher because the high financial credit rating. Under these assumptions and hypotheses set up this study corporate governance (CGI) has been studied demonstrated how the financial impact on the credit rating (CFR). Findings,

    relevant corporate governance (CGI) and financial credit rating was found to significantly affect the positive (+), Regression coefficient code is expected code of positive (+), the value

    indicated by the value of all positive. The results of corporate governance (CGI) has showed excellent results, such as the more predictable will increase the credit score financial rating. The results of this study will have more CGI-credit financial rating the greater good. This study might be expected to provide a useful guide that corporate social responsibility, the company with a good governance and oversight systems enable to to get a higher credit rating in practice and research.

Comparison of Efficiency of Manufacturing Companies Listed on KOSPI Using Metafrontier: Focusing on ESG Ratings (메타프론티어를 이용하여 상장 제조업의 효율성 비교: ESG 등급을 중심으로)

  • Chanhi Cho;Hyoung-Yong Lee
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.1-22
    • /
    • 2023
  • Existing studies on mixed ratings that combine ESG ratings and credit ratings have been rare. Through meta-frontier analysis, this study examines the relationship between the prime and non-prime groups in ESG ratings, credit ratings, and mixed ratings that consider ESG ratings and credit ratings at the same time. Efficiency was compared. Meta-frontier analysis was used to compare the efficiency of 143 listed manufacturing companies in Korea between the prime and non-prime groups based on the ESG ratings assigned to them by KCGS and the credit ratings assigned by Korea's three major credit rating agencies. As a result of this study, first, the meta-efficiency of the prime mixed-grade group was statistically more efficient than the non-prime mixed-grade group under the variable return scale (VRS) assumption. Second, the prime ESG rating group had a relatively higher proportion of scale inefficiency than the non-prime ESG rating group. Third, in terms of economies of scale, the prime credit rating group had a higher proportion of diminishing returns to scale (DRS) than the non-prime credit rating group. This study will help companies interested in sustainability management to do ESG management.

Feature Selection for Multi-Class Support Vector Machines Using an Impurity Measure of Classification Trees: An Application to the Credit Rating of S&P 500 Companies

  • Hong, Tae-Ho;Park, Ji-Young
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.43-58
    • /
    • 2011
  • Support vector machines (SVMs), a machine learning technique, has been applied to not only binary classification problems such as bankruptcy prediction but also multi-class problems such as corporate credit ratings. However, in general, the performance of SVMs can be easily worse than the best alternative model to SVMs according to the selection of predictors, even though SVMs has the distinguishing feature of successfully classifying and predicting in a lot of dichotomous or multi-class problems. For overcoming the weakness of SVMs, this study has proposed an approach for selecting features for multi-class SVMs that utilize the impurity measures of classification trees. For the selection of the input features, we employed the C4.5 and CART algorithms, including the stepwise method of discriminant analysis, which is a well-known method for selecting features. We have built a multi-class SVMs model for credit rating using the above method and presented experimental results with data regarding S&P 500 companies.

Influence of Global versus Local Rating Agencies to Japanese Financial Firms

  • Han, Seung Hun;Reinhart, Walter J.;Shin, Yoon S.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.4
    • /
    • pp.9-20
    • /
    • 2018
  • Global rating agencies, such as Moody's and S&P, have assigned credit ratings to corporate bonds issued by Japanese firms since 1980s. Local Japanese rating agencies, such as R&I and JCR, have more market share than the global raters. We examine the yield spreads of 1,050 yen-denominated corporate bonds issued by financial firms in Japan from 1998 to 2014 and find no evidence that bonds rated by at least one global agency are associated with a significant reduction in the cost of debt as compared to those rated by only local rating agencies. Unlike non-financial firms, the reputation effect of global rating agencies does not exist for Japanese financial firms. We also observe that firms with less information asymmetry are more likely to acquire ratings from Moody's or S&P. Additionally, the firm's financial profile does not affect its choice to seek out ratings from global raters. Our findings are contradictory to those by Han, Pagano, and Shin (2012), who employ bonds issued by non-financial firms in Japan. Our conjecture is that the asymmetric nature of financial firms makes investors less likely to depend on a credit risk assessment by rating agencies in determining the yields of new bonds.

The Effect of Earnings Management on the Bond Grading (이익조정이 신용등급에 미치는 영향)

  • Kim, Yang-Gu;Kwon, Hyeok-Gi;Park, Sang-Bong
    • Management & Information Systems Review
    • /
    • v.34 no.2
    • /
    • pp.113-130
    • /
    • 2015
  • This study considers the relation between firms' earnings management and credit rating. Unlike preceding papers only focusing earnings management by accrual(thereafter, AM), this paper examines the effect of accrual earnings management(AMs) and real earning management(thereafter, RM) on credit rating. RMs have more negative effects on firms' forward cash flow generation abilities and long term operating performances than AMs. So, RMs are more negative signals for credit analysts than AMs. But credit analysts have much difficulty in seeing through RM, because if credit analysts want to find out RMs, they have to understand firms' internal operating activities, cost structures, receivables collection practices, and review whether profit distortions are due to abnormal change of them. Sample of this study consists of 2,150firm-year data listed companies from 2002 to 2010. Empirical evidence shows that AMs and RMs are negatively related to credit rating. This result implies that credit analysts see through AMs and RMs in interpreting financial informations, that is to say, they discount credit rating in considering level of earnings management that consist of real activity and accrual earning management. This paper also finds that RMs are more negatively related to credit ratings than AMs. This result suggests that credit analysts don't take RMs into account in credit rating process as much as AMs.

  • PDF

Validation Comparison of Credit Rating Models Using Box-Cox Transformation

  • Hong, Chong-Sun;Choi, Jeong-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.789-800
    • /
    • 2008
  • Current credit evaluation models based on financial data make use of smoothing estimated default ratios which are transformed from each financial variable. In this work, some problems of the credit evaluation models developed by financial experts are discussed and we propose improved credit evaluation models based on the stepwise variable selection method and Box-Cox transformed data whose distribution is much skewed to the right. After comparing goodness-of-fit tests of these models, the validation of the credit evaluation models using statistical methods such as the stepwise variable selection method and Box-Cox transformation function is explained.

  • PDF

Nonparametric homogeneity tests of two distributions for credit rating model validation (신용평가모형에서 두 분포함수의 동일성 검정을 위한 비모수적인 검정방법)

  • Hong, Chong-Sun;Kim, Ji-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.261-272
    • /
    • 2009
  • Kolmogorov-Smirnov (K-S) statistic has been widely used for testing homogeneity of two distributions in the credit rating models. Joseph (2005) used K-S statistic to obtain validation criteria which is most well-known. There are other homogeneity test statistics such as the Cramer-von Mises, Anderson-Darling, and Watson statistics. In this paper, these statistics are introduced and applied to obtain criterion of these statistics by extending Joseph (2005)'s work. Another set of alternative criterion is suggested according to various sample sizes, type a error rates, and the ratios of bads and goods by using the simulated data under the similar situation as real credit rating data. We compare and explore among Joseph's criteria and two sets of the proposed criterion and discuss their applications.

  • PDF