• 제목/요약/키워드: Crash stop test

검색결과 4건 처리시간 0.018초

실선시험에 의한 새바다호의 조종 성능에 관한 고찰 (A study on the manoeuvrability of T/S SAEBADA by real sea trials)

  • 안영수;강일권;김형석;김정창;김민석;조효제;이춘기
    • 수산해양기술연구
    • /
    • 제41권4호
    • /
    • pp.289-295
    • /
    • 2005
  • This study is intended to provide navigator with specific information necessary to assist in the avoidance of collision and in operation of ships to evaluate the manoeuvrability of own ship. The actual manoeuvering characteristics of ship can be adequately judged from the results of typical ship trials manoeuvres. Author carried out sea trials based full scale for turning test, zig-zag test, spiral tests and crash-stop test at actual sea going condition. The turning circle manoeuvres were performed on starboard and port sides with $35^{\circ}$ rudder angle at the service speed, and Zig-zag procedures were performed on both sides with $10^{\circ}$ and $20^{\circ}$ rudder angle respectively. Spiral tests were carried out on the both sides and crash stop test was also carried out. The results from tests could be compared directly with the standards of manoeuverability of IMO and consequently the manoeuvring qualities of the ship is fully satisfied with its.

PC-Crash를 이용한 SUV의 전복사고 거동 및 충돌속도 예측에 관한 연구 (A Study on the Rollover Behavior of SUV and Collision Velocity Prediction using PC-Crash Program)

  • 최용순;백세룡;정종길;조정권;윤준규
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.227-235
    • /
    • 2018
  • 최근 자동차 교통량의 증가로 인해 차량 전복사고가 급증하여 이에 따른 인명피해가 증가해왔으며, 이를 방지하기 위한 차량충돌 실험장비 및 해석프로그램 개발 등의 다양한 기술이 진보되고 있다. 본 연구에서는 적용한 차량모델은 미국 FORD사의 EXPLORER 차종이고, Rollover 해석은 차량충돌해석에 상용되고 있는 PC-Crash 프로그램을 이용하여 SUV의 전복사고 거동 및 충돌속도를 예측하였다. 그 해석결과로 FMVSS No. 208 법규를 통한 SUV차량의 실제 Rollover 거동과 비교할 때 유사한 결과를 보여주었으며, 충돌속도 및 롤각의 특성은 1000 msec 이후부터는 다소 오차율이 커지는 경향을 나타냈다. 그리고 NHTSA의 데이터베이스를 활용하여 고찰한 결과로 충돌속도 15~77 km/h, 충돌각도 $22{\sim}74^{\circ}$ 범위에서 전복사고가 가장 많이 발생함을 나타냈고, 실제 사고사례를 적용함으로써 차량 출발 위치, Roof 파손위치, 정지위치를 재현시켜 차량 Roof가 파손될 때 차량속도 및 충돌시간을 예측할 수 있었다.

후방추돌평가 시험을 위한 가상환경 시나리오 개발연구 (A study on scenario in virtual environment for test about rear-end collision)

  • 백우경;김배영;김시우;정충민;송종원;서명원
    • 자동차안전학회지
    • /
    • 제3권2호
    • /
    • pp.17-21
    • /
    • 2011
  • Vehicle safety device such as active headrest and rear detection system has been developing as people are interested about rear end collision more than head on or than front. However, there is no any standard or criterion in order to evaluate vehicle safety device for rear end collision. Also there is no test protocol about rear end collision in vehicle experiment. Therefore, this research developed scenario for experiment about rear end collision in vehicle experiment. Also this research evaluated dangerousness about vehicle test and fitness about re-enacting rear end collision using scenario developed using commercial software (PC-Crash) which can re-enact vehicle collision in virtual vehicle experiment. Scenario developed according to statistics from National Highway Traffic Safety Administration and German In-Depth Accident Study. Scenario has twelve cases which composed of Re-LVS (Rear end Leading Vehicle Stop), Re-LVM (Rear end Lead Vehicle Moving) and scenario for evaluation about malfunction of active headrest.

Azimuth thruster 시스템을 장착한 나라호의 조종성 (The maneuvering characteristics of the research vessel NARA equipped with the azimuth thruster system)

  • 김정창;강일권;이준호;함상준;박치완;김수형
    • 수산해양기술연구
    • /
    • 제53권3호
    • /
    • pp.276-285
    • /
    • 2017
  • The research vessel NARA equipped with an azimuth thruster system was built in 2015. There are few vessels with this propulsion system in Korea. This vessel has two modes such as the normal for maneuvering and the power for investigation, and the other two modes as one axis and two axes on the operating. This type of vessels does not seem to have a clear grasp of the maneuvering character in comparison with the vessel with a conventional propulsion system. So the authors carried out the sea test for the turning, the zigzag and the inclination, and the results are as follows. In turning test, the case of using the two axes mode is much better than the case of using the one axis mode for the elements of turning, such as advance, transfer, tactical diameter and final diameter, but turning hard over the rudder in full speed is very vulnerable to capsize in both modes. In zigzag test, the yaw quicking responsibility index, T is very large excessively, which means a bad counter maneuvering ability, so an operator has to keep in mind that in turning operation. If necessary to avoid collision at head on situation, it may be a more effective method to use the crash astern stop than the turning according to the conditions and circumstances for the shortest stopping distance is very short.