• Title/Summary/Keyword: Crane systems

Search Result 246, Processing Time 0.023 seconds

A study on design of a fuzzy controller and a simulator for development of controller for reducing vibration in overhead crane (천정 크레인의 진동 저감을 위한 퍼지제어기 및 제어기 개발용 시뮬레이터 설계에 관한 연구)

  • Jeong, kyung-Chae;Hong, Jin-Cheol;Bae, Jin-Ho;Lee, Dal-Hae;Lee, Suck-Gyu;Lee, Hai-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.96-101
    • /
    • 1996
  • In this paper, a simulator is designed along with S/W package for crane controllers. Due to trolley's acceleration or deceleration, cranes inherently cause swing motion of the objects in transporting heavy objects. This swing not only deteriorates the crane handling safety but also increases the processing time. To overcome these drawbacks, the fuzzy rule-based simulator is developed with inhibitory swing at final action. The computer simulation shows that the swing at initial and final positions is removed fast with small position error. The proposed simulator can be used for handling object stabley and the study of effectiveness in unmanned operation of cranes.

  • PDF

Adaptive Anti-Sway Trajectory Tracking Control of Overhead Crane using Fuzzy Observer and Fuzzy Variable Structure Control (퍼지 관측기와 퍼지 가변구조제어를 이용한 천정주행 크레인의 적응형 흔들림 억제 궤적추종제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.452-461
    • /
    • 2007
  • Adaptive anti-sway and trajectory tracking control of overhead crane is presented, which utilizes Fuzzy Uncertainty Observer(FUO) and Fuzzy based Variable Structure Control(FVSC). We consider an overhead crane system which can be decoupled into the actuated and unactuated subsystems with its own lumped uncertainty such as parameter uncertainties and external disturbance. First, a new method for anti-sway control using FVSC is proposed to improve the conventional method based on Lyapunov direct method, while a conventional trajectory tracking control law using feedback linearization is directly adopted. Second, FUO is designed to estimate one of the two lumped uncertainties which can compensate both of them, based on the fact that two lumped uncertainties are coupled with each other. Then, an adaptive anti-sway control is proposed by incorporating the proposed FVSC and FUO. Under the condition that the observation error is Uniformly Ultimately Bounded(UUB) within an arbitrarily shrinkable region, the overall closed-loop system is shown to be Globally Uniformly Ultimately Bounded(GUUB). In addition, the Global Asymptotic Stability(GAS) of it is shown under the vanishing disturbance assumption. Finally, the effectiveness of the proposed scheme has been confirmed by numerical simulations.

Analysis of Dynamic Response of a Floating Crane and a Cargo with Elastic Booms Based on Flexible Multibody System Dynamics (붐의 탄성효과를 고려한 해상크레인의 유연 다물체 동역학 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • This study analyzes the dynamic response of a floating crane with a cargo considering an elastic boom to evaluate(or for evaluation of) its flexibility effect on their dynamic response. Flexible multibody system dynamics is applied in order to establish a dynamic equation of motion of the multibody system, which consists of flexible and rigid bodies. In addition, a floating reference frame and nodal coordinates are used to model the boom as a flexible body. The study also simulates the coupled surge, pitch, and heave motions of the floating crane carrying the cargo with three degrees of freedom by numerically solving the equation. Finally, the simulation results of the elastic and rigid booms are comparatively analyzed and the effects of the flexible boom are discussed.

Design of a Container Crane Controller Using the Fuzzy Control Technique (퍼지제어 기법을 이용한 컨테이너 크레인의 제어기 설계)

  • 소명옥;유희한;박재식;남택근;최재준;이병찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.759-766
    • /
    • 2003
  • The amount of container freight continuously has been increased. and the low efficiency of container crane causes jamming frequently in transportation and cargo handling at port. The conventional control techniques based on a mathematical model are not well suited for dealing with ill-defined and uncertain systems. Recently. Fuzzy control has been successfully applied to a wide variety of practical problems as robots. automatic train operation system. etc. In this paper. a fuzzy controller for container crane is proposed to accomplish a design of improved control system for minimizing the swing motion at destination. In this scheme a mathematical model for the system is obtained in state space form. Finally. to exhibit the tracking performance and robustness of the proposed controller. computer simulations were carried out with various references, parameter variations and disturbances.

Theoretical consideration and digital control for automation of tower cranes (타워형 크레인의 자동화를 위한 이론적 고찰 및 디지탈 제어에 관한 연구)

  • 이진우;이충환;김상봉
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.993-998
    • /
    • 1992
  • The paper treated the oscillation control of cargo rope and the position control of cart for a tower crane system by adopting the optimal regulator method. Since the tower crane has nonlinearity and it is very unstable when the cargo is mobiling, an insensitive control system with respect to oscillation of cargo rope and disturbance such as wind is required. In this paper, model equation of the tower crane is induced by using Lagrange equation and it is linearized at equilibrium point. The real time control of tower crane syste is implemented by 16bits microcomputer with A/D and D/A convetters to illustrate the application of the adopted optimal desgn method.

  • PDF

Measures to Reduce Tower Crane Accidents During Operation by Improving Signal System and Education for Signalmen (신호체계와 신호수 교육 개선을 통한 양중 작업 중 타워 크레인 사고 저감 대책)

  • Yun, Dong Hun;Park, Jong Yil;Kee, Jung Hun
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.68-75
    • /
    • 2019
  • As the tower crane accident emerged as a social issue in 2017, various government measures were prepared. Most of the measures are focused on erecting, climbing, and dismantling phases. Analyzes of 84 serious accidents related to tower cranes from 2000 to 2018 and 104 near misses accidents from 2016 to 2018 revealed that 50% of the serious accidents occurred during the operating phase. The main occupation influencing operating phase accidents was signalman(81.6% of serious accidents), whose communication and competency were governing causes. This result was the same in 294 questionnaires to signalmen. Signal systems and education policies for tower crane signalman in Korea and foreign countries were analyzed, and standardization of wireless signal system and improvement of education system were propose.

Dynamics and GA-Based Stable Control for a Class of Underactuated Mechanical Systems

  • Liu, Diantong;Guo, Weiping;Yi, Jianqiang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • The control of underactuated mechanical system is very complex for the loss of its control inputs. The model of underactuated mechanical systems in a potential field is built with Lagrangian method and its structural properties are analyzed in detail. A genetic algorithm (GA)based stable control approach is proposed for the class of under actuated mechanical systems. The Lyapunov stability theory and system properties are utilized to guarantee the system stability to its equilibrium. The real-valued GA is used to adjust the controller parameters to improve the system performance. This approach is applied to the underactuated double-pendulum-type overhead crane and the simulation results illustrate the complex system dynamics and the validity of the proposed control algorithm.

Application of Coefficient Diagram Method for Multivariable Control of Overhead Crane System

  • Tantaworrasilp, A.;Benjanarasuth, T.;Ngamwiwit, J.;Komine, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2240-2245
    • /
    • 2003
  • In this paper, the controller design by coefficient diagram method (CDM) for controlling the trolley position, load-swing angle and hoisting rope length of the overhead crane system simultaneously is proposed. The overhead crane system is a MIMO system consisting of two inputs and three outputs. Its mathematical model is nonlinear with coupling characteristics. This nonlinear model can be approximated to obtain a linear model where the first input mainly affects the trolley position and the load-swing angle while the second input mainly affects the hoisting rope length. In order to utilize the CDM concept for assigning the controllers, namely PID, PD and PI controllers separately, the model is approximated to be three transfer functions in accordance with trolley position, the load-swing angle and the hoisting rope length controls respectively. The satisfied performances of the overhead crane system controlled by the these controllers and fast rejection of the disturbance effect occurred at the trolley position are shown by simulation and experimental results.

  • PDF

Modelling and Accurate Tracking Controller Design of A Transfer Crane (트랜스퍼 크레인의 모델링 및 고정도 주행제어기 설계에 관한 연구)

  • Kim, Young-Bok;Suh, Jin-Ho;Lee, Kwon-Soon
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.114-122
    • /
    • 2006
  • The most important thing in the container terminal is to handle the cargo effectively in a limited time. To achieve this objective, many strategies have been introduced and applied. If we consider the automated container terminal, it is necessary that the cargo handling equipment is equipped with more intelligent control systems. From the middle of the 1990s, an automated rail-mounted gantry crane (RMGC) and rubber-tired gantry crane (RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, equipment like CCD cameras and sensors have been mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes that make the cargo handling be performed effectively in the yards. For this plant, we ought to consider modeling, tracking control, anti-sway system design, skew motion suppressionand complicated motion control and suppressing problems. In this paper, the system modeling and a tracking control approach are discussed, based on a two-degree-of-freedom (2DOF) servo-system design. From the simulation results, the good control performance of the designed control system is evaluated.

Modelling and Accurate Tracking Control of a Transfer Crane (트랜스퍼 크레인의 모델링 및 고정도 주행제어에 관한 연구)

  • Choi, Moon-Seok;Kim, Young-Bok;Suh, Jin-Ho;Lee, Kwon-Soon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.485-488
    • /
    • 2006
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. In this paper, the system modelling and a tracking control approach are discussed based on two-degree-of-freedom (2DOF) servosystem design.

  • PDF