• 제목/요약/키워드: Cracked concrete

검색결과 332건 처리시간 0.03초

Determination of Double-K Fracture Parameters of Concrete Using Split-Tension Cube: A Revised Procedure

  • Pandey, Shashi Ranjan;Kumar, Shailendra;Srivastava, A.K.L.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권2호
    • /
    • pp.163-175
    • /
    • 2016
  • This paper presents a revised procedure for computation of double-K fracture parameters of concrete split-tension cube specimen using weight function of the centrally cracked plate of finite strip with a finite width. This is an improvement over the previous work of the authors in which the determination of double-K fracture parameters of concrete for split-tension cube test using weight function of the centrally cracked plate of infinite strip with a finite width was presented. In a recent research, it was pointed out that there are great differences between a finite strip and an infinite strip regarding their weight function and the solution of infinite strip can be utilized in the split-tension specimens when the notch size is very small. In the present work, improved version of LEFM formulas for stress intensity factor, crack mouth opening displacement and crack opening displacement profile presented in the recent research work are incorporated. The results of the double-K fracture parameters obtained using revised procedure and the previous work of the authors is compared. The double-K fracture parameters of split-tension cube specimen are also compared with those obtained for standard three point bend test specimen. The input data required for determining double-K fracture parameters for both the specimen geometries for laboratory size specimens are obtained using well known version of the Fictitious Crack Model.

철근콘크리트 깊은 보의 전단강도 예측 (Prediction of Shear Strength of Reinforced Concrete Deep Beams)

  • 천주현;김태훈;이상철;정영수;이광명;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.532-535
    • /
    • 2004
  • This paper presents a nonlinear finite element analysis procedure for the prediction of shear strength of reinforced concrete deep beams. A computer program, named RCAHESTC(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile. compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The proposed numerical method for the prediction of shear strength of reinforced concrete deep beams is verified by comparison with the reliable experimental results.

  • PDF

변동 축하중을 받는 중공 철근콘크리트 교각에 관한 해석적 연구 (Analytical Study on Hollow Reinforced Concrete Bridge Piers under Varying Axial Load)

  • 김태훈;김영진;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.81-84
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge piers under varying axial load. The role of the variable axial load is very important in the ductility, strength, stiffness, and energy dissipation. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The proposed numerical method for the inelastic behavior of hollow reinforced concrete bridge piers under varying axial load is verified by comparison with reliable experimental results.

  • PDF

조립식 프리스트레스트 콘크리트 교각의 비선형 유한요소해석 (Nonlinear Finite Element Analysis of Precast Segmental Prestressed Concrete Bridge Columns)

  • 김태훈;진병무;김영진;신현목
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.292-299
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge columns is verified by comparison with reliable experimental results.

  • PDF

반복하중을 받는 철근콘크리트 교각의 피로손상 (Fatigue Damage of Reinforced Concrete Bridge Columns Subjected to Cyclic Load)

  • 김태훈;김운학;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.99-104
    • /
    • 2002
  • This paper presents an analytical prediction of the fatigue damage of reinforced concrete bridge columns subjected to cyclic load. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. The proposed numerical method for fatigue damage of reinforced concrete bridge columns subjected to cyclic load is verified by comparison with reliable experimental results.

  • PDF

면내회전강성도를 갖는 철근콘크리트 쉘요소의 개발 (Development of Reinforced Concrete Shell Element with Drilling Rotational Stiffness)

  • 김태훈;유영화;신현목
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.47-56
    • /
    • 1999
  • In this paper, a nonlinear finite element procedure is presented for the analysis of reinforced concrete shell structures. The 4-node quadrilateral flat shell finite element with drilling rotational stiffness is developed. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and to be a smeared in a layer. The proposed numerical method for nonlinear analysis of reinforce concrete shells will be verified by comparison with reliable experimental results.

폐유리를 혼입한 강섬유보강 콘크리트의 물리ㆍ역학적 특성에 관한 실험적 연구 (An Experimental Study on Physical and Mechanical Properties of Steel Fiber Reinforced Concrete Containing Waste Glass)

  • 박승범;이봉춘;조광연;이택우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.903-908
    • /
    • 2002
  • The production of waste glasses has been increased with the development of industry. The utilization of waste glass for concrete can cause the concrete to be cracked and to be weakened due to an expansion by alkali-silica reaction(ASR). When used the fibers with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. In this study, we conducted basic experimental research to analyze the possibilities of recycling of amber waste glass as fine aggregates for steel fiber reinforced concrete. Test results of fresh concrete. slump is decreased because grain shape is angular and air content is increased due to involving small size particles so much in waste glasses. Also. tensile and flexural strengths increased as the content of steel fibers increased. In conclusion, the content of waste glass below 40% is reasonable and usage of pertinent admixture is necessary to obtain workability or air content.

  • PDF

Concrete stiffness matrices for membrane elements

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.599-608
    • /
    • 1997
  • The concrete stiffness matrices of membrane elements used in the finite element analysis of wall-type structures are reviewed and discussed. The behavior of cracked reinforced concrete membrane elements is first described by summarizing the constitutive laws of concrete and steel established for the two softened truss models (the rotating-angle softened-truss model and the fixed-angle softened-truss model). These constitutive laws are then related to the concrete stiffness matrices of the two existing cracking models (the rotating-crack model and the fixed-crack model). In view of the weakness in the existing models, a general model of the matrix is proposed. This general matrix includes two Poisson ratios which are not clearly understood at present. It is proposed that all five material properties in the general matrix should be established by new biaxial tests of panels using proportional loading and strain-control procedures.

철근콘크리트 교각의 지진응답 예측 (Predictions of Seismic Behavior of Reinforced Concrete Bridge Piers)

  • 김태훈;김운학;신현목
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.133-140
    • /
    • 2002
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete bridge piers and to provide the data for developing improved seismic design criteria. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected. local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. The proposed numerical method for the prediction of seismic behavior for reinforced concrete bridge piers is veri fief by comparison with the reliable experimental results.

  • PDF

탄소섬유시트를 사용한 철근콘크리트 구조물의 휨 보강에 관한 실험적 연구 (An Experimental Study on Flexural Repair of Reinforced Concrete Beams with the CFRP Sheet)

  • 박정원;박상렬;민창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.781-786
    • /
    • 2000
  • This paper presents the behavior and strenghening effect of reinforced concrete rectangular beams strengthened sing CFRP sheets with different strengthening level. In general, normally strengthened beams are failed by interfacial shear failure (delamination) within concrete, instead of by tensile failure of the CFRP sheets. The delamination occurred suddenly and the concrete cover cracked vertically by flexure was spalled off due to the release energy. The ultimate load considerably increased with an increase of strengthening level, while the ultimate deflection significantly decreased. The tensile force of CFRP sheets and average shear stress of concrete at delamination failure were curvilinearly proportional to the strengthening level. Therefore, the increment of ultimate load obtained by strengthening was curvilinearly proportional to th strengthening level.

  • PDF