• 제목/요약/키워드: Crack opening displacement

검색결과 226건 처리시간 0.026초

강 용접열영향부 조립역의 열변형취화에 관한 연구 (A Study on Hot Straining Embrittlement of Coarse Grained HAZ in Steel Weldments)

  • 정세희;김태영;임재규
    • Journal of Welding and Joining
    • /
    • 제3권1호
    • /
    • pp.22-31
    • /
    • 1985
  • Hot straining embrittlement is one of the most important factors which cause the brittle fracture initiation even in the service temperature in the case of mild steel and high tensile steel. Therefore it is necessary to analyze thoroughly the hot straining embrittlement occurred in weld HAZ of the structural steels. The behaviors of plastic deformation and fracture toughness at the notch tip of the hot strained weld HAZ in structural steels (SB 41 KS, SA 588-Grade A ASTM) have been studied by the recrystallization technique and crack opening displacement (COD) test method. The obtained results are summarized as follows; 1. The plastic zone is formed at the notch tip of weld HAZ owing to nomotonic and cyclic hot stran, and the maximum plastic strain increases with the accumulated hot straining amounts. 2. The distribution of the effective strain at the plastic deformed zone in HAZ can be determined as follows; (.epsilon. over bar $_{p}$ )$_{\chi}$=.epsilon. over bar $_{cr}$ ( $R_{/chi}$/.chi.)$^{m}$ where, .epsilon. over bar $_{cr}$ : (SB 41; .epsilon. over bar $_{cr}$ = 0.2, SA 588; .epsilon. over bar $_{cr}$ = 0.1) 3. The embrittlement of weld HAZ in SB 41 and SA 588 is influenced by hot strain, and the degree of embrittlement becomes deeper with hot straining amounts. 4. The embrittlement of weld HAZ of SB 41 is not influenced by the hot straining amounts until .epsilon. over bar $_{max}$ = 0.36, $R_{\chi}$ = 0.065mm, however the embrittlement of structure in SA 588 is considerably influenced even by a small quantity of the hot straining amounts.s.

  • PDF

Multi-Scale finite element investigations into the flexural behavior of lightweight concrete beams partially reinforced with steel fiber

  • Esmaeili, Jamshid;Ghaffarinia, Mahdi
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.393-405
    • /
    • 2022
  • Lightweight concrete is a superior material due to its light weight and high strength. There however remain significant lacunae in engineering knowledge with regards to shear failure of lightweight fiber reinforced concrete beams. The main aim of the present study is to investigate the optimum usage of steel fibers in lightweight fiber reinforced concrete (LWFRC). Multi-scale finite element model calibrated with experimental results is developed to study the effect of steel fibers on the mechanical properties of LWFRC beams. To decrease the amount of steel fibers, it is preferred to reinforce only the middle section of the LWFRC beams, where the flexural stresses are higher. For numerical simulation, a multi-scale finite element model was developed. The cement matrix was modeled as homogeneous and uniform material and both steel fibers and lightweight coarse aggregates were randomly distributed within the matrix. Considering more realistic assumptions, the bonding between fibers and cement matrix was considered with the Cohesive Zone Model (CZM) and its parameters were determined using the model update method. Furthermore, conformity of Load-Crack Mouth Opening Displacement (CMOD) curves obtained from numerical modeling and experimental test results of notched beams under center-point loading tests were investigated. Validating the finite element model results with experimental tests, the effects of fibers' volume fraction, and the length of the reinforced middle section, on flexural and residual strengths of LWFRC, were studied. Results indicate that using steel fibers in a specified length of the concrete beam with high flexural stresses, and considerable savings can be achieved in using steel fibers. Reducing the length of the reinforced middle section from 50 to 30 cm in specimens containing 10 kg/m3 of steel fibers, resulting in a considerable decrease of the used steel fibers by four times, whereas only a 7% reduction in bearing capacity was observed. Therefore, determining an appropriate length of the reinforced middle section is an essential parameter in reducing fibers, usage leading to more affordable construction costs.

솔레노이드에 의해 정렬된 강섬유가 휨파괴 거동에 미치는 영향 (Effect of Aligned Steel Fibers by a Solenoid on Flexural Fracture Behavior)

  • 이규필;문도영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권6호
    • /
    • pp.193-200
    • /
    • 2023
  • 본 논문에서는 전자기장 노출을 통한 강섬유의 방향 정렬 방법이 휨파괴거동에 미치는 영향을 비교, 분석하였다. 강섬유의 방향을 휨공시체의 종방향으로 정렬할 수 있는 규모의 솔레노이드를 설계, 제작하였다. 설계강도 30MPa의 강섬유보강콘크리트 휨공시체를 제작하였으며, 이를 전자기장에 노출한 공시체와 노출하지 않은 공시체로 구분하여 휨파괴 실험을 수행하였다. 실험변수는 강섬유의 혼입률과 형상비로 하였다. 실험결과, 전자기장에 노출된 시험체의 휨강도, 최대하중에서의 개구변위가 미소하게 증가하였으며, 특히 파괴에너지의 증가가 명확하게 확인되었다. 잔존강도의 증가가 파괴에너지 증가에 가장 큰 영향을 준 것으로 확인되었다.

강섬유 보강 초고성능 콘크리트의 재료특성 및 휨 거동 역학적 특성 (Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete)

  • 김경철;양인환;조창빈
    • 콘크리트학회논문집
    • /
    • 제28권2호
    • /
    • pp.177-185
    • /
    • 2016
  • 이 논문에서는 강섬유 보강 초고성능 콘크리트(UHPC)의 부재의 휨거동을 특성을 파악하고자 하였다. 하이브리드 강섬유보강 초고성능 콘크리트의 압축강도는 150 MPa이다. 부피비 1.5%의 하이브리드 강섬유 보강 초고성능 콘크리트의 휨거동 특성 실험을 수행하였다. 강섬유보강 콘크리트의 압축 및 인장거동 재료 특성은 구조거동 예측을 위해 매우 중요하다. 강섬유 보강 초고성능 콘크리트의 하중-균열개구변위 측정결과를 이용하여 인장거동 특성을 파악하였다. 실험결과는 하이브리드 강섬유 보강 UHPC는 균열제어에 유리한 것을 나타낸다. 또한, 강섬유 보강 UHPC 보의 연성지수는 1.6~3.0을 나타내어 연성거동에 효과적임을 나타낸다. 모멘트-곡률 관계 측정결과와 해석결과를 비교하였다. 휨철근을 배근하지 않은 UHPC 보에 대한 휨강도 예측결과는 측정 휨강도를 다소 과다평가하고 있다. 전반적으로 본 연구에서 제시한 강섬유 보강 초고성능 콘크리트 재료 및 휨 거동 모델링 제안기법에 의해 압축강도 150 MPa 급의 강섬유 보강 콘크리트 보의 합리적인 휨성능 예측이 가능하다.

휨을 받는 강섬유 보강 고강도철근 콘크리트 보의 구조 거동 (Structural Behavior of Steel Fiber-Reinforced Concrete Beams with High-Strength Rebar Subjected to Bending)

  • 양인환;김경철;조창빈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권3호
    • /
    • pp.93-102
    • /
    • 2016
  • 이 논문의 목적은 압축강도 130 MPa급의 고강도 강섬유 보강 콘크리트 보의 휨거동 특성을 파악하는데 있다. 부피비 1.0%의 강섬유와 철근비 0.02 이하의 철근으로 보강된 고강도 강섬유 보강 콘크리트의 휨거동 특성 실험결과를 제시하였다. 일반강도철근과 고강도철근을 실험 부재에 사용하였다. 강섬유 보강 콘크리트의 압축 및 인장거동 재료 실험과 모델링을 수행하였다. 강섬유 보강 콘크리트의 하중-균열개구변위 실험결과를 반영하여 가상균열모델에 근거한 역해석을 통해 인장거동모델링을 제시하였다. 실험결과는 강섬유 보강 콘크리트와 고강도철근의 사용은 균열제어 및 연성 거동에 유리한 것을 나타낸다. 일반강도철근을 사용한 보의 휨강도 실험값에 대한 수치해석에 의한 예측값의 비는 0.81~1.42를 나타내고, 고강도철근을 사용한 보의 휨강도 실험값에 대한 수치해석에 의한 예측값의 비는 0.92~1.07을 나타낸다. 수치해석에 의한 휨강도는 실험결과를 합리적으로 예측하고 있는 것으로 판단된다.

강섬유 보강 초고강도 콘크리트의 인장 특성 실험 연구 (An Experimental Study on Tensile Properties of Steel Fiber-Reinforced Ultra High Strength Concrete)

  • 양인환;박지훈;이재호
    • 한국건설순환자원학회논문집
    • /
    • 제7권3호
    • /
    • pp.279-286
    • /
    • 2019
  • 본 연구에서는 기준압축강도 180MPa의 강섬유 보강 초고강도 콘크리트(UHSC)의 인장 특성에 관한 실험 연구를 수행하였다. 부피비 1%의 강섬유를 혼입하여 직접인장강도 시편과 3점 하중재하 휨 실험을 위한 프리즘 시편을 제작하였다. 제작된 시편은 균열 유도를 위하여 시편 중앙에 노치를 설정하였으며, 각 평가방법에 따라 실험을 수행하였다. 우선, 콘크리트의 균열 후 거동 특성을 파악하기 위하여 직접인장강도 실험을 수행하여 응력-변형률 곡선을 분석하였으며, 3점 하중재하 휨 실험을 통하여 하중-CMOD 곡선을 얻고, 역해석을 수행하여 응력-변형률 곡선을 분석하였다. 직접인장강도 실험과 3점 하중재하 휨 실험의 인장거동 특성은 유사하게 나타났다. 또한, SC 구조설계지침에서 제시하고 있는 인장응력-변형률 곡선 모델링을 수행하고, 측정값과 예측값의 비교분석을 수행하였다. 재료감소계수가 1.0일 때, 변형률이 0.02일 때까지 예측값은 측정값과 유사하게 나타나지만, 재료감소계수가 0.8일 때, 예측값은 측정값의 최소값에 근접한다. 또한, 변형률이 0.02를 초과하는 구간에서는 SC 구조설계지침에 의한 예측값이 측정값을 과소평가한다.