• 제목/요약/키워드: Crack initiation location

검색결과 54건 처리시간 0.022초

탄소성 유한요소 해석을 통한 곡관 두께에 따른 파손 위치 및 균열 진전 방향 분석 (Analysis of the Elbow Thickness Effect on Crack Location and Propagation Direction via Elastic-Plastic Finite Element Analysis)

  • 김재윤;이종민;김윤재;김진원
    • 한국압력기기공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.26-35
    • /
    • 2022
  • When piping system in a nuclear power plant is subjected to a beyond design seismic condition, it is important to accurately determine possibility of crack initiation and, if initiation occurs, its location and time. From recent experimental works on elbow pipes, it was found that the crack initiation location and crack propagation direction of the SA403 WP316 stainless steel elbow pipe were affected by the pipe thickness. In this paper, the crack initiation location and crack propagation direction for SA403 WP316 stainless steel elbow pipes with different thickness were analyzed via elastic-plastic finite element analysis. Based on FE results, the effect of the pipe thickness on different crack initiation location and crack propagation direction was analyzed using ovality, stress and strain components. It was also confirmed that the presence of internal pressure had no effect on the crack initiation location and crack propagation direction.

프레팅 피로 균열의 발생 위치 및 방향 예측 (Prediction of Initiation Location and Direction of Fretting Fatigue Crack)

  • 허용학
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1185-1192
    • /
    • 2003
  • Governing parameters for determination of the location of crack initiation and direction of crack initiation were investigated by performing fretting fatigue tests and analysis on Al 2024-T351. Fatigue tests were carried out using biaxial fatigue machine. It was shown that the dominant fatigue crack tended to initiate at the outer edge of one of the four bridge pads, growing at an angle beneath a pad, before turning perpendicular to the orientation of the axial load. Distribution of stresses generated during fretting fatigue loading along the interface was calculated by elastic FE simulation. It can be known that the location of crack initiation can be predicted by using the maximum tangential stress range. Futhermore, the crack initiation direction can also be predicted by a maximum tangential stress range.

유한요소법과 초음파 메카트로닉스 시스템에 의한 강도적 불균질 이음부의 노치위치에 따른 균열발생 한계 조건 (Evaluation of Notch Location Effect on Ductile Crack Initiation at Strength Mismatched Joints by Finite Element Method and Ultrasonic-Mechatronics System)

  • 안규백;방한서;풍전정남
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.87-92
    • /
    • 2005
  • It has been well hewn that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using a two-parameters criterion based on equivalent plastic strain and stress triaxiality. The present study focuses on the effects of strength mismatch, which can elevate plastic constraint due to heterogeneous plastic straining, on the critical condition for ductile fracture initiation usinga two-parameter criterion. Fracture initiation testing has been conducted under static loading using notched round bar specimens which had different notch locations. This study provides the fundamental clarification of the effect of strength mismatching and effect of notch location on the critical condition to ductile crack initiation from notch root using fuite element method and ultrasonic-mechatronics system. The critical condition of ductile crack initiation from notch root of strength mismatched tensile specimens under static loading appeared to be almost the same as those of homogeneous tensile specimens with circumferential sharp notch specimen. Also, the effect of notch location in mismatched specimens was estimated using finite element(FE) analyses.

단일재 알루미늄과 알루미늄/유리섬유 적층재의 결함 위치에 따른 응력분포 및 균열발생 거동 (Stress Distribution and Crack Initiation Behavior due to the Defect Locations in Monolithic Aluminum and Al/Glass Fiber Laminates)

  • 송삼홍;김종성;오동준;윤광준;김철웅
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.284-292
    • /
    • 2005
  • Material flaws in the from of pre-existing defects can severely affect the crack initiation. Stress distribution and crack initiation life of engineering materials such as monolithic aluminum alloy and Al/Glass fiber laminate may be different according to the defect location. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic aluminum and Al/Glass fiber laminates under cyclic bending moment. Stress distribution and crack initiation behavior near a circular hole are considered. Results of Finite Element (FE) model indicated the features of different stress field due to the relative defects positions. Especially, the defects positions at ${\theta}=0^{\circ}\;and\;{\theta}=30^{\circ}$ was strongly effective in stress concentration factor ($K_t$) and crack initiation behavior.

원공노치 인근에 발생한 결함의 위치변화가 균열성장률(da/dN) 및 응력확대계수범위(δK)의 관계에 미치는 영향 - 단일재 알루미늄과 Al/GFRP 적층재의 피로거동 비교 - (The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate -)

  • 김철웅;고영호;이건복
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.344-354
    • /
    • 2007
  • The objective of this study is to investigate the effect of arbitrarily located defect around the circular hole in the aircraft structural material such as Al/GFRP laminates and monolithic Al alloy sheet under cyclic bending moment. The fatigue behavior of these materials may be different due to the defect location. Material flaws in the from of pre-existing defects can severely affect the fatigue crack initiation and propagation behavior. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic Al alloy and Al/GFRP laminates under cyclic bending moment. The fatigue behavior i.e., the stress concentration factor($K_t$), the crack initiation life($N_i$), the relationship between crack length(a) and cycles(N), the relationship between crack growth rate(da/dN) and stress intensity factor range(${\Dalta}K$) near a circular hole are considered. Especially, the defects location at ${\theta}_1=0^{\circ}\;and\;{\theta}_2=30^{\circ}$ was strongly effective in stress concentration factor($K_t$) and crack initiation life($N_i$). The test results indicated the features of different fatigue crack propagation behavior and the different growing delamination shape according to each location of defect around the circular hole in Al/GFRP laminates.

노치위치의 변화에 따른 강도적 불균질재의 연성크랙 발생 거동 (The ductile crack initiation behavior of strength mismatch by a location of notch root)

  • 안규백;대전충;방한서;풍전 정남
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.253-255
    • /
    • 2005
  • It has been well known that ductile fracture of steels are accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. The present study focuses on the effects of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality. In this study evaluate the criterion for ductile crack initiation in strength mismatch specimen effect of location of notch root.

  • PDF

불규칙하게 분포된 미소결함 사이의 응력간섭 및 피로균열 거동에 대한 실험적 연구 (1) (An Experimental Study on the Fatigue Behavior and Stress Interaction of Arbitrarily Located Defects (I))

  • 송삼홍;배준수;최병호
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1288-1296
    • /
    • 2000
  • In this study, fatigue crack behavior between arbitrarily located defects was investigated by experiment. Especially, stress interaction between micro hole defects and fatigue cracking, and fatigue crack initiation life following the variation of location of micro hole defects were considered. In addition, crack initiation position by micro hole stress interaction and the relationship between stress concentration factor and fatigue initiation life are studied in detail.

선박의 용접구조 피로시험에 대한 음향방출기법의 적용 연구 (A Study on the Application of Acoustic Emission for the fatigue Test of Ship Welded Structure)

  • 안성찬;김대수;이진희;박진수
    • 비파괴검사학회지
    • /
    • 제23권3호
    • /
    • pp.220-226
    • /
    • 2003
  • 본 연구에서는 선박 용접구조물의 피로균열 발생 여부와 균열의 진전 상황을 실시간으로 모니터링하기 위한 기초 연구단계로서 선박의 전형적인 용접형태인 필렛용접부(fillet welded joint)의 피로시험에 대한 음향방출(Acoustic Emission, AE)기법의 적용성을 검토하였다. 필렛용접부의 피로시험에서 균열의 발생과 진전, 위치를 검출하기 위하여 AE 카운트(ring down count)와 위치표정(source location)등을 이용하였다. 시험결과 용접 토우(toe)부의 표면균열(surface crack)이 관통균열(through crack)로 발전하기 전까지의 AE 신호는 비교적 미약하게 나타났으나 균열의 발생시점과 위치를 카운트-위치표정으로 어느 정도 추정 가능함을 확인하였다. 표면균열이 브라켓의 두께방향으로 관통한 시점에서는 AE 카운트의 양이 급격히 증가하였으며 카운트-위치표정, 이벤트(event)-위치표정으로 균열의 위치와 발생시점을 명확하게 확인할 수 있었다. 또한 AE 위치표정과 클러스터(cluster) 기능을 이용하여 균열발생 위치 이외의 영역에서 검출된 신호는 잡음에 기인한 것으로 추정할 수 있었다.

항공재료 리벳홀에 인접한 원공결함의 위치에 따른 응력집중계수의 변화와 균열발생거동 (The Variation of Stress Concentration Factor and Crack Initiation Behavior on the Hole Defects Around the Rivet Hole in a Aircraft Materials)

  • 송삼홍;김철웅;김태수;황진우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.381-388
    • /
    • 2003
  • The material deficiencies in the form of pre-existing defects can initiated cracks and fractures. The stress distribution and fatigue crack initiation life of engineering materials may be associated with the size, the shape and the relative location of defects contained in the component. The objective of this study is to investigate the effect of arbitrarily located hole defect around the rivet hole of a wing section in monolithic aluminum and Al/GFRP laminates under cyclic bending moment during a service load. The stress distribution and the fatigue crack initiation behavior near a rivet hole of on the relationships between stress concentration factor ($K_t$) and relative position of defects were considered. The test results indicated the features of different stress field. Therefore, the stress concentration factor ($K_t$) and the fatigue crack initiation behavior was illustrated different behavior according to each position of hole defect around the rivet hole in monolithic aluminum and Al/GFRP laminates.

  • PDF

Elastic-Plastic Stress Analysis and Fatigue Lifetime Prediction of Cross-Bores in Autofrettaged Pressure Vessels

  • Koh, Seung-Kee
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.935-946
    • /
    • 2000
  • Elastic-plastic stress analysis has been performed to evaluate the fatigue life of an autofrettaged pressure vessel containing cross-bores subjected to pulsating internal pressure of 200 MPa. Finite element analyses were used to calculate the residual and operating stress distributions of the pressure vessel due to the autofrettage process and pulsating internal pressure, respectively. Theoretical stress concentration factors of 3.06, 2.58, and 2.64 were obtained at the cross-bore of the pressure vessel due to internal pressure, 50%, and 100% autofrettage loadings, respectively. Local stresses and local strains determined from the elastic-plastic finite element analysis were employed to calculate the failure location and fatigue life of the pressure vessel with radial cross-bores, incorporating the low-cycle fatigue properties of the pressure vessel steel and fatigue damage parameters. Increase in the amount of overstrain by autofrettage process moved the crack initiation location from the inner radius toward a mid-wall, and extended the crack initiation life. Predicted fatigue life of the fully autofrettaged pressure vessel with cross-bores increased about 50%, compared to the unautofrettaged pressure vessel. At the autofrettage level higher than 50%, the failure location and fatigue life of the pressure vessel were not significantly influenced by the autofrettage level.

  • PDF