• Title/Summary/Keyword: Crack healing

Search Result 122, Processing Time 0.025 seconds

Self-Healing Properties in Cracking of Blast Furnace Slag Cement Paste (고로 슬래그 시멘트 페이스트 균열에서의 자기치유 특성)

  • Lee, Seung-Heun;Kang, Kook-Hee;Lim, Young-Jin;Lee, Se-Jin;Park, Byeong-Seon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • This study investigated the self-healing properties of blast furnace slag cement paste sample with $Na_2SO_4$ as a blast furnace slag activator after conducting the permeability test. Self-healing properties were examined by crack filling ratio and quantification of self-healing products. The degree of self-healing was evaluated by the crack filling ratio, and the crack filling ratio was analyzed by panoramic analysis using BSE-DIP for objectivity. The average crack filling ratio showed a tendency of decreasing from the upper part of the specimen to the lower part as the average of the top part was 18%, the middle part was 7% and the bottom part was 5% on average. The maximum crack filling ratio was 44% and the minimum crack filling ratio was 3%. The residual self-healing product after the permeability test contained a large amount of Ca element and Al element derived from the blast furnace slag, and the Si element was mainly present near the crack surface. The most abundant minerals in self-healing products were about 68% C-A-H. $CaCO_3$ was about 13% and C-A-S-H was about 8%. Three minerals accounted for 90% of self-healing products. C-A-H was mainly present at a part slightly distant from the crack surface and showed an angular or acicular shape. The C-A-S-H was generated on the surface naturally connected to the existing specimen, and the $CaCO_3$ was generally observed on the surface of the specimen or the inside of the crack.

Development of Crack Monitoring System for Self-healing Repair Mortar Surface Using Image Processing Technique (이미지 처리 기법을 이용한 자기치유 보수 모르타르 시공표면의 균열 모니터링 시스템 개발)

  • Oh, Sang-Hyuk;Moon, Dae-Jung;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.359-366
    • /
    • 2021
  • In this study, It was developed an monitoring cracks system based on image processing techniques in order to measure cracks, which are major damages in concrete, and to convert them into a database. The crack monitoring system consists of crack image captured equipment and a crack detection and analysis software. This system provides objective and quantitative data by replacing the conventional visual inspection. The crack detection algorithm w as verified through an indoor test using virtual cracks, and the amount of crack detection and crack width change was monitored by applying it to the self-healing repair mortar construction site. In the case of the crack width detected through image analysis, the maximum difference from the actual crack width was 0.0334mm. It was possible to detect microcracks of 0.1mm or less, and the effect of crack healing over time of the self-healing repair mortar was confirmed trough the field test.

Crack-Healing Behavior of $Al_2O_3$ Ceramics for Textile Machinery (섬유기기용 $Al_2O_3$계 세라믹스의 균열치유거동)

  • An, B.G.;Kim, M.K.;Ahn, S.H.;Kim, J.W.;Park, I.D.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.60-64
    • /
    • 2006
  • Alumina ceramic for textile machinery was sintered and subjected to three-point bending. A semicircular surface crack was made on each sample. Crack-healing behavior was systematically studied, as a function of crack-healing temperature and crack size. The bending strength and fracture toughness of the crack-healed sample from $1200^{\circ}C\;to\;1400^{\circ}C$ were investigated. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the fracture toughness. Alumina ceramic for textile machinery have the ability to heal after cracking, from over $1300^{\circ}C$. The material can completely heal a $65{\mu}m$ diameter semielliptical crack. The fracture toughness could be explained by 2-parameter Weibull distribution.

  • PDF

Correlation between Crack Width and Water Flow of Cracked Mortar Specimens Measured by Constant Water Head Permeability Test (정수위 투수시험에 의해 측정된 균열 모르타르 시편의 유출수량과 균열폭의 상관관계)

  • Choi, Seul-Woo;Bae, Won-Ho;Lee, Kwang-Myong;Shin, Kyung-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.267-273
    • /
    • 2017
  • Recently, the researches of self-healing concrete technology are being carried out actively due to the advent of importance for the maintenance of concrete structures. A water permeability test has been widely used for the evaluation of self-healing performance. However, it is difficult to compare tests results since there is no standard test method related to the self-healing. A standard method for measuring the crack width does not exist neither though the self-healing performance is significantly influenced by the initial crack width. In this study, the effect of water head and crack width on water flow was investigated using a constant water head permeability test equipment. The correlation equation between the initial crack width and water flow was suggested through the regression analysis of test data, and the predicted crack widths agree well with the real crack widths measured using microscopy.

Cyclic Crack Healing Effect of Al2O3 Ceramics (알루미나 세라믹스의 반복적 균열치유 특성)

  • Moon, Chang-Kwon;Kim, Bu-Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.69-74
    • /
    • 2013
  • In this study, the crack healing effects of $Al_2O_3$ ceramics based on the heat treatment conditions were investigated. The influence of the additive amounts of SiC nanoparticles and the cycling process of indentation-heat treatment on the crack healing effect of $Al_2O_3$ ceramics were also examined. Three-point bending tests were carried out and the morphological changes in the fracture surface were observed by using FE-SEM. As a result, heat-treated samples in a vacuum or air atmosphere showed improved bending strengths compared to un-heat treated samples. This means that cracked specimens can be healed by heat treatment in a vacuum or air atmosphere. The crack healing effect of $Al_2O_3$ ceramics that were heat treated in an air atmosphere was much higher than that of those heat treated in a vacuum. After heat treatment, the $Al_2O_3$ ceramics with 30 wt% SiC nanoparticles showed a higher bending strength than those with 15 wt% SiC. The cyclic indentation and heat treatment did not remarkably affect the crack healing effect. The SEM images showed that the median crack, indenter mark on the surface, and pores in the fracture surface of a specimen almost disappeared after being heat treated in an air atmosphere.

Self-healing and leakage performance of cracks in the wall of a reinforced concrete water tank

  • Gao, Lin;Wang, Mingzhen;Guo, Endong;Sun, Yazhen
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.727-741
    • /
    • 2019
  • A reinforced concrete water tank is a typical functional liquid storage structure and cracks are the greatest threat to the liquid storage structure. Tanks are readily cracked due to seismic activity, thereby leading to the leakage of the stored liquid and a loss of function. In order to study the effect of cracks on liquid storage tanks, self-healing and leakage tests for bending cracks and through cracks in the walls of a reinforced concrete water tank were conducted. Material performance tests were also performed. The self-healing performance of bending cracks in a lentic environment and through cracks in a lotic environment were tested, thereby the self-healing width of bending micro-cracks in the lentic environment in the short term were determined. The through cracks had the capacity for self-healing in the lotic environment was found. The leakage characteristics of the bending cracks and through cracks were tested with the actual water head on the crack. The effects on liquid leakage of the width of bending cracks, the depth of the compression zone, and the acting head were determined. The relationships between the leakage rate and time with the height of the water head were analyzed. Based on the tests, the relationships between the crack characteristics and self-healing as well as the leakage were obtained. Thereby the references for water tank structure design and grading earthquake damage were provided.

Effect of Crack Control Strips at Opening Corners on the Strength and Crack Propagation of Downsized Reinforced Concrete Walls (축소 철근콘크리트 벽체의 내력과 균열진전에 대한 개구부모서리 균열제어 띠의 영향)

  • Wang Hye-Rin;Yang Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.40-47
    • /
    • 2022
  • The present study aimed to examine the effectiveness of different techniques for controlling the diagonal cracks at the corners of openings on the strength, deformation, and crack propagation in reinforced concrete walls. The crack control strip proposed in this study, the conventional diagonal steel reinforcing bars, and stress-dispersion curved plates were investigated for controlling the diagonal cracks at the opening corners. An additional crack self-healing function was also considered for the crack control strip. To evaluate the volume change ratio and crack width propagation around the opening, downsized wall specimens with a opening were tested under the diagonal shear force at the opening corner. Test result showed that the proposed crack control strip was more effective in reducing the volume change and controlling the crack width around the opening when compared to the conventional previous methods. The crack control strip with crack healing feature displayed the superior performance in improving the strength of the wall and reducing the crack width while healing cracks occurred in the previous tests.

Isolation of Microorganisms for Optimization of Autonomous Crack Healing and Verification of Crack Healing (자발적 균열치유작용 최적화를 위한 미생물군 분리 및 균열치유작용 검증)

  • Byung-Jae Lee;Yeon-Jun Yu;Hyo-Sub Lee;Joo-Kyoung Yang;Yun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.103-108
    • /
    • 2023
  • In this study, basic research was conducted to secure microbial resources applicable to autonomous crack healing concrete. To this end, in this experiment, biomineral-forming microorganisms were separated from natural sources, and the ability of survival in cement and calcium carbonate precipitation were compared to secure suitable microbial resources. Bacillus-type bacteria forming endospores were isolated from the sample, and the amount of calcium carbonate produced by the six microorganisms identified by 16S rRNA sequencing was compared. Two types of microorganisms, Bacillus velezensis and Bacillus subtilis, with the highest calcium carbonate precipitation were selected, and the survival of the microorganisms was confirmed through phase contrast microscopy after being cured after being added to the mortar. In addition, it was confirmed that the autonomous crack healing capability by the crack healing material produced by microorganisms was confirmed by artificially generating cracks in the mortar.

Evaluation of Crack Monitoring Field Application of Self-healing Concrete Water Tank Using Image Processing Techniques (이미지 처리 기법을 이용한 자기치유 콘크리트 수조의 균열 모니터링 현장적용 평가)

  • Sang-Hyuk, Oh;Dae-Joong, Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.593-599
    • /
    • 2022
  • In this study, a crack monitoring system capable of detecting cracks based on image processing techniques was developed to effectively check cracks, which are the main damage of concrete structures, and a program capable of imaging and analyzing cracks was developed using machine vision. This system provides objective and quantitative data by replacing the appearance inspection that checks cracks with the naked eye. The verification of the development system was applied to the construction site of a self-healing concrete water tank to monitor the crack and the amount of change in the crack width according to age. In the case of crack width detected by image analysis, the difference from the measured value using a digital microscope was up to 0.036 mm, and the crack healing effect of self-healing concrete could be confirmed through the reduction of crack width.

A Study on Crack Self-Healing of Concrete Overlay for Bridge Decks (콘크리트 교면포장의 자기균열치유 특성에 대한 검토 연구)

  • Jeon, Sung IL;Yun, Kyung Ku;An, Ji Hwan;Choi, Pan Gil
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • PURPOSES : The purpose of this study is to verify the property of self-healing, and to propose an appropriate duration for wet curing of bridge deck concrete overlays. METHODS : In this study, reinforced bars were inserted into concrete molds in order to prevent brittle fracture and induced cracks in the concrete resulting from indirect tension mode. The induced time of concrete cracking was 3 to 7 days, following which the concrete specimens were cured in water. The resulting concrete crack width was measured using image analysis equipment. Additionally, the self-healing tests were performed using the following three mixtures: OPC, SFC, and LMC. RESULTS : Concrete mixtures with crack widths of $150{\mu}m$ or lower were completely healed by Day 28. Hydrates of crack fills were found to be the calcium carbonate. CONCLUSIONS : The cement-based mixtures exhibit properties of self-healing. Considering these properties, it is necessary to increase the curing duration of concrete overlays for bridge decks.