• Title/Summary/Keyword: Crack growth rate curve

Search Result 41, Processing Time 0.029 seconds

EVALUATION OF PRIMARY WATER STRESS CORROSION CRACKING GROWTH RATES BY USING THE EXTENDED FINITE ELEMENT METHOD

  • LEE, SUNG-JUN;CHANG, YOON-SUK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.895-906
    • /
    • 2015
  • Background: Mitigation of primary water stress corrosion cracking (PWSCC) is a significant issue in the nuclear industry. Advanced nickel-based alloys with lower susceptibility have been adopted, although they do not seem to be entirely immune from PWSCC during normal operation. With regard to structural integrity assessments of the relevant components, an accurate evaluation of crack growth rate (CGR) is important. Methods: For the present study, the extended finite element method was adopted from among diverse meshless methods because of its advantages in arbitrary crack analysis. A user-subroutine based on the strain rate damage model was developed and incorporated into the crack growth evaluation. Results: The proposed method was verified by using the well-known Alloy 600 material with a reference CGR curve. The analyzed CGR curve of the alternative Alloy 690 material was then newly estimated by applying the proven method over a practical range of stress intensity factors. Conclusion: Reliable CGR curves were obtained without complex environmental facilities or a high degree of experimental effort. The proposed method may be used to assess the PWSCC resistance of nuclear components subjected to high residual stresses such as those resulting from dissimilar metal welding parts.

A Study on the Electrical Characteristics of Photovoltaic Module Depending on Micro-Crack Patterns of Crystalline Silicon Solar Cell (결정질 태양전지의 Micro-crack 패턴에 따른 PV모듈의 전기적 특성에 관한 연구)

  • Song, Young-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.407-412
    • /
    • 2012
  • This study investigated the process of thermal-induced growth of micro-crack developed at the crystalline solar cell using EL image, determined the output characteristic according to the pattern of micro-crack, analyzed the I-V characteristic according to the pattern of crack growth, and predicted the output value using simulation. The purpose of this study was, therefore, to investigate the process of thermal-induced growth of micro-crack developed at the early stage of PV module completion using EL image, to analyze the resulting decrement of output and predict the output value using simulation. It was observed that the crack grew increasingly by the thermal condition, and accordingly the lowering of output was accelerated. The output values of crack patterns with various direction were predicted using simulation, resulting in close I-V curve with only around 4% of error rate. It is considered that it is possible to predict the electric characteristic of solar cell module using only pattern of micro-crack occurred at solar cell based on our results.

Fatigue Crack Propagation Characteristics in HAZ of A106 Gr B Steel Weldments (A106 Gr B강 용접열영향부에서의 피로균열성장특성)

  • 김철한;조선영;김복기;배동호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.263-268
    • /
    • 1999
  • With HAZ of A 106 Gr B steel weldment, fatigue test in air, electrochemical polarization test and corrosion fatigue test in 3.5wt.% NaCl solution were performed changing load ratio. Obtained results are as follows. 1) K$\sub$op/ was independent of K$\sub$max/ and load ratio in fatigue crack growth. 2) In variation of load ratio, the scatter band of crack growth curve was reduced by half considering crack closure 3) In the result of electrochemical polarization test, current density was increased abruptly when potential was larger than corrosion potential. 4) Fatigue crack growth rate in corrosive environment was markly higher than the rate in air because of corrosion characteristics of the material and anodization of inner surface crack.

  • PDF

A Study on High Temperature Low Cycle Fatigue Crack Growth Modelling by Neural Networks (신경회로망을 이용한 고온 저사이클 피로균열성장 모델링에 관한 연구)

  • Ju, Won-Sik;Jo, Seok-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.2752-2759
    • /
    • 1996
  • This paper presents crack growth analysis approach on the basis of neural networks, a branch of cognitive science to high temperature low cycle fatigue that shows strong nonlinearity in material behavior. As the number of data patterns on crack growth increase, pattern classification occurs well and two point representation scheme with gradient of crack growth curve simulates crack growth rate better than one point representation scheme. Optimal number of learning data exists and excessive number of learning data increases estimated mean error with remarkable learning time J-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

A Study on the Influence of Residual Stresses on Fatigue Crack Growth Behaviors in the Weldment Plate with Various Thickness(II) (변후 용접판재에서의 피로균열성장거동에 미치는 잔류응력의 영향에 관한 파괴역학적 연구(II))

  • 차용훈
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.3
    • /
    • pp.22-27
    • /
    • 1994
  • For the $\beta$=1 specimen with constant thickness, Crack growth rate is smoothly increasing in the a-N curve. On the other hand for $\beta$=2 specimen with various thickness, the inflection point is observed in crack growth rate near the thickness interface. da/dN before the inflection point is increased, and da/dN after the point is decreased, compared to the $\beta$=1 specimen. da/dN near the thickness interface is approached zero. The descending point was observed earlier as $\beta$ increased. Considering the relation between da/dN and λ, the crack propagation rates for the case of $\beta$ =1 incrased almost linearly, however, the crack propagation rates for $\beta$=2,3 decreased more rapidly near the thickness interface. Additionally, the decreased point in da/dN for $\beta$=3 is farther from the thickness interface than the case for $\beta$ =2.

  • PDF

Crack growth rate evaluation of alloys 690/152 by numerical simulation of extracted CT specimens

  • Lee, S.H.;Kim, S.W.;Cho, C.H.;Chang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1805-1815
    • /
    • 2019
  • While nickel-based alloys have been widely used for power plants due to corrosion resistance and good mechanical properties, during the last couple of decades, failures of nuclear components increased gradually. One of main degradation mechanisms was primary water stress corrosion cracking at dissimilar metal welds of piping and reactor head penetrations. In this context, precise estimation of welding effects became an important issue for ensuring reliability of them. The present study deals with a series of finite element analyses and crack growth rate evaluation of Alloys 690/152. Firstly, variation of residual stresses and equivalent plastic strains was simulated taking into account welding of a cylindrical block. Subsequently, extraction and pre-cracking of compact tension (CT) specimens were considered from different locations of the block. Finally, crack growth curves of the alloys and heat affected zone were developed based on analyses results combined with experimental data in references. Characteristics of crack growth behaviors were also discussed in relation to mechanical and fracture parameters.

A Study on Propagation Behavior of Surface-Fatigue-Crack in the Mild Steel at Elevated Temperatures (軟鋼의 高溫 表面渡勞균열 成長擧動에 관한 硏究)

  • ;;北川英夫
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.425-433
    • /
    • 1983
  • Fatigue tests by axial loading (R=0.1) were carried out to investigate fatigue crack growth properties of small surface cracks in mild steel at room temperature, 250.deg. C and 400.deg. C, by using flat specimens with a small artificial pit. All the data of the fatigue crack growth rate obtained in the present tests are determined as a function of the stress intensity factor range, so that the applicability of liner fracture mechanics to the fatigue crack growth of surface cracks at elevated temperatures is investigated and discussed in comparison with the data of type 304 stainless steel at room temperature and elevated temperature. The obtained results are as follows: 1) Relations of both surface fatigue crack length and its depth to cycle ratio fall within a narrow scatter band in spite of different stress levels. 2) The .DELTA. .sigma. .root. .pi. a-da/dN relation of surface fatigue crack growth at room temperature is independent of the stress level and can be plotted as a straight line at log-log diagram, but the relation at 400.deg. C depends partly on the stress level. 3) Relations of the fatigue crack growth into depth d(2b)/dN and is stress intensity factor range .DELTA. $K_{I}$, accounted for the aspect ratio variation, fall within a narrow scatter band for wide range of the applied stress levels. And .DELTA. $K_{I}$E-d(2b)/dN relations of mild steel at different stress level coincide relatively well with the data of type 304 stainless steel. 4) The value of aspect ratio obtained by a beach mark method and a temper coloring method approaches about 0.9 in common with crack growth and it is independent of stress level and temperatures. 5) The equi-crack length curve is parallel to S-N$_{f}$ curve at elevated temperatures.s.s.s.

A study on the fatigue crack growth of mild steel weldments using flux cored wire $CO_2$ welding (국산 Flux-Cored Wire를 이용한 반자동용접이음새에서의 피로파괴 특성)

  • 엄동석
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.42-50
    • /
    • 1989
  • The application of fracture mechanics is being increased gradually to assess the safety of welded structures containing crack. Fatigue crack propagation behavior and elastic-plastic fracture toughness J$_{IC}$ of home made flux cored wire(1.22mm) CO$_{2}$ weldments was discussed. Especially fatigue crack propagation test was carried out by .DELTA.K control instead of load control and elastic-plastic fracture toughness J$_{IC}$ was obtained by ASTM-R curve method on C.T.specimen in transverse direction of weldments. The results obtained are as follows; (1) Weld metal presented an almost complete similarity to base metal on fatigue crack propagation rate in transverse direction. (2) Weld metal was more than base metal on J$_{IC}$ value in transverse direction. (3) F.C.W. CO$_{2}$ weldments had an excellent characteristic of fatigue crack propagation rate and J$_{IC}$ in less than 50kg/mm$^{2}$ steel grade, this would result from that weld metal had good static strength.trength.

  • PDF

Study on effect of solution temperature on corrosion fatigue of high strength steel (고장력강의 부식피로에 미치는 용액온도의 영향에 관한 연구)

  • 유헌일
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.40-51
    • /
    • 1986
  • A study has been made of the corrosion fatigue of high strength low alloy steel in 3.5% NaCl solution under tension stress for solution temperature being 25.deg. C, 55.deg. C and 85 .deg. C. The main results obtained are as follows; 1) The corrosion fatigue crack growth rate curve could be divided into the First Region, the Second Region and the Third Region. 2) The corrosion fatigue crack growth rates in the First Region and the Second Region were Arrhenius temperature-dependent in this test range. The apparent activation energies for the corrosion fatigue cack growth rate were found to be 2000cal/mol in the First Region and 3700 cal/mol in the Second Region. 3) Hematite (Fe$_{2}$O$_{3}$) as the hexahedral crystal and magnetite (Fe$_{3}$O$_{4}$) as the octahedral crystal were observed in the corrosion products on the corrosion fatigue fracture surface at 85.deg. C and the anode fusion seem to be generated in the crack tip region at high temperature. 4) The complex environment effect ratio which was defined by the ratio of fatigue crack growth rate in corrosion environment to that in air might be considered not only a criterion estimating the effect of environment quantitatively but also an important parameter in the selection of the design stress for the fail safe design. The complex environment effect was not greater than ten in this test.

  • PDF

Propagation Characteristics of Fatigue Microcracks on Smooth Specimen of $2_{1/4}$ Cr-1 Mo Steel ($2_{1/4}$ Cr-1 Mo강의 평활재상의 미소한 표면피로균열의 성장특성)

  • Suh, Chang-Min;Woo, Byung-Chul;Jang, Hui-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.100-111
    • /
    • 1990
  • In this paper, fatigue tests were carried out at stress test levels of 461 MPa, 441 MPa, and 431 MPa by using smooth specimen of$2_{1/4}$ Cr-1 Mo steel with the stress ratio(R) of 0.05. The initiation, growth and coalescense process of the major cracks and sub-cracks among the fatigue cracks on the smooth specimen are investigated and measured under each stress level at a constant cycle ratio by the replica technique with optical microscope. Some of the important results are as follows: In spite of the difference of stress levels, the major crack data gather into a small band in the curve of surface crack length and crack depth against cycle ratio N/Nf. The sub-crack data, however, deviate from the band of the major crack. The growth rates, da/dN, of major and sub-crack plotted against the stress intensity factor range, ${\Delta}K$, have the tendency to be compressed on a relatively small band. But it is more effective to predict fatigue life through major cracks. The propagation behavior of surface microcracks on the smooth specimens coincides with that of the specimen having an artificial small surface defect or through crack.

  • PDF