• 제목/요약/키워드: Crack growth rate

검색결과 589건 처리시간 0.032초

고온수중에서 STS 304 스테인리스강의 응력부식균열 성장속도 (Stress Corrosion Crack Rate of STS 304 Stainless Steel in High Temperature Water)

  • 김정기
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.156-162
    • /
    • 2000
  • Sensitized STS 304 stainless steel crack growth rate(CGR) in high temperature water was investigated under trapezoidal wave loading test using fracture mechanics techniques. The CGR, due to stress corrosion cracking(SCC), were systematically measured as a function of the stress intensity factor and stress. holding time under trapezoidal wave loading. In high temperature water, CGR was enhanced by a synergistic effects in combination with an aggressive environment and mechanical damage. The CGR, $(da/dN)_{env}$ was basically described as a summation of the environmentally assisted crack growth rate $(da/dN)_{SCC}$, $(da/dN)_{CF}$ and fatigue crack growth rate in air $(da/dN)air,. The CGR, $(da/dN)_{env}$, increased linearly with increasing stress holding time. The CGR, $(da/dN)_{SCC}$ decreased linearly with increasing stress holding time. Fracture surface mode varied from trans-granular cracking to inter-granular cracking with increasing stress holding time.

7075-T6Al 합금에 있어서 변동하중진폭 하에서의 피로균열성장거동 (Fatigue Crack Growth Behavior of 7075-T6Al Alloy under Simple Stepped Variable Amplitude Loading Conditions)

  • 신용승
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.80-88
    • /
    • 1997
  • An experimental investigation of the fatigue through crack growth behavior under simple stepped variable loading condition has been performed using Al7075-T651. Experiments were carried out by using cantilever bending type specimens, with chevron notches on a small electro-magnetic test machine. Tensile overloads have a retarding effect on the fatigue crack growth rates, therefore tensile overloads were used for the beneficial effect on the fatigue life. While in most cases compressive overloads have only a vanishing effect on crack growth rates, some experiments with single edge crack tension specimens reveal a marked growth retardation. The stress ratios used in this investigations varies from R=0.32 to 0.81, from R=0.04 to 0.76, from R=-0.15 to 0.73, and from R=-0.33 to 0.68 and the peak load for each case was not varied. The crack growth and crack closure were measured by Kikukawa's compliance method with a strain gauge mounted on the backside of each specimens. The results obtained are as follows. When the stepped variable load was applied, the smaller the stress ration was, the larger the delayed retardation of the crack growth rate was. The fatigue crack growh rate data obtained for through cracks were plotted well against the effective stress intensity factor range from 4.0 to 20.0MP{a^{SQRT}m}. It was found that the effective stress intensity factor range ratio was related well to the opening stress intensity factor, the maximum stress intensity factor, and crack length.

신경회로망을 이용한 AI 2024-T3합금의 피로손상예측에 관한 연구 (A Study on the Prediction of Fatigue Damage in 2024-T3 Aluminium Alloy Using Neural Networks)

  • 조석수;장득열;주원식
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.168-177
    • /
    • 1999
  • Fatigue damage is the phenomena which is accumulated gradually with loading cycle in material. It is represented by fatigue crack growth rate da/dN and fatigue life ratio $N/N_{f}$. Fracture mechanical parameters estimating large crack growth behavior can calculate quantitative amount of fatigue crack growth resistance in engineering material. But fatigue damage has influence on various load, material and environment. Therefore, In this study, we propose that artificial intelligent fatigue damage model can predicts fatigue crack growth rate da/dN and fatigue life ratio $N/N_{f}$ simultaneously using fracture mechanical and nondestructive parameters.

  • PDF

손상허용해석을 위한 균열성장모델 교정 (Calibration of crack growth model for damage tolerance analysis)

  • 주영식;김재훈
    • 한국군사과학기술학회지
    • /
    • 제5권4호
    • /
    • pp.67-77
    • /
    • 2002
  • This paper introduces the calibration results of the fatigue crack growth models for damage tolerance analysis of the aircraft structures. Generalized Willenborg model and Wheeler model are calibrated with experimental data tested under the load spectrum of a trainer. The retardation factors such as, shut-off ratio in Generalized Willenborg model and shaping exponent in Wheeler model, are evaluated for aluminum alloys AL2024-T3511, AL7050-T7451 and AL7075-T73511. It is shown that the retardation effect of the crack growth rate depends on the yield strength of material and the maximum stress in the load spectrum. Generalized Willenborg model and Wheeler model give satisfactory prediction of crack growth life but the calibration of the experimental parameters with test is required.

용접구조용 고강도강재의 피로균열성장특성에 관한 실험적 연구 (An Experimental Study on Fatigue Crack Growth Characteristics of Welded High-Strength Steels)

  • 홍성욱;경갑수;남왕현;정영화
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.773-782
    • /
    • 2002
  • 본 연구에서는 향후 사용빈도가 증가할 것으로 예상되는 SM570, POSTEN60 및 POSTEN80 강재를 대상으로 용접선 방향이 피로균열성장속도에 미치는 영향, 용접방법 및 강도등급에 따른 피로균열성장특성, 그리고 각 재질별(모재부, 열영향부, 용접금속부) 피로균열 성장특성을 정량적으로 평가하기 위해서 CT시험편을 제작해서 일련의 피로시험을 실시하였다. 피로시험결과 노치가 용접선과 평행한 시험체의 경우 노치선단에 존재하는 압축잔류응력의 영향으로 노치가 용접선과 직각인 시험체의 경우보다 피로균열성장속도의 지연현상이 현저해지는 것을 알 수 있었다. 그리고 용접 방법에 따른 피로균열성장특성은 강재의 강도등급에 관계없이 FCAW가 SAW에 비해서 피로균열성장속도의 분산이 적게 나타나고 있으며, 또한 높은 응력확대계수범위 영역에서 피로균열성장속도의 수렴현상이 나타나는 것을 알 수 있었다. 한편 본 피로시험결과와 기존의 연구결과를 비교하면 피로균열성장영역에서의 피로균열성장속도는 유사한 경향을 나타내고 있으므로 본 연구에서 대상으로 한 강재는 피로안전성을 충분히 확보하고 있음을 알 수 있었다.

크리프 균열 진전 거동의 유한 요소 해석 (Finite Element Analysis of Creep Crack Growth Behavior)

  • 최현창
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.490-497
    • /
    • 1998
  • An elast-biscoplastic finite element analysis is performed to investigate detailed growth behavior of creep cracks and the numerical results are compared with experimental results. The results of mesh translation method are compared with those of node release method. Load line displancement curve obtained from the crack growth analysis by mesh translation shows the improved results than that obtained from the crack growth by node release method when the secondary creep rate is only used as creep material property. The results of accounting for primary creep rate and instantaneous plasticity shows a good agreement with the experimental result.

  • PDF

Consideration of Methods Evaluating the Growing Process of Stress Corrosion Cracking of the Sensitized 18-8 Austenitic Stainless Steel in High Temperature Water Based on Electric Circuit Theory: The Effects of Stress Factors

  • Tsukaue, Yasoji
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.103-111
    • /
    • 2007
  • The effect of stress factors on the growing process of stress corrosion cracking (SCC) of the sensitized 18-8 stainless steel in high temperature water was investigated using equations of crack growth rate derived from applying electric circuits to SCC corrosion paths. Three kinds of cross sections have to be considered when electric circuit is constructed using total current. The first is ion flow passage area, $S_{sol}$, of solution in crack, the second is total dissolving surface area, $S_{dis}$, of metal on electrode of crack tip and the third is dissolving cross section, $S_{met}$, of metal on grain boundary or in base metal or in welding metal. Stress may affect each area. $S_{sol}$ may depend on applied stress, $\sigma_{\infty}$, related with crack depth. $S_{dis}$ is expressed using a factor of $\varepsilon(K)$ and may depend on stress intensity factor, K only. SCC crack growth rate is ordinarily estimated using a variable of K only as stress factor. However it may be expected that SCC crack growth rate depends on both applied stress $\sigma_{\infty}$ and K or both crack depth and K from this consideration.$\varepsilon(K)$ is expressed as ${\varepsilon}(K)=h_2{\cdot}K^2+h_3{\cdot}K^3$ when $h_{2}$ and $h_{3}$ are coefficients. Also, relationships between SCC crack growth rate, da/dt and K were simulated and compared with the literature data of JBWR-VIP-04, NRC NUREG-0313 Rev.2 and SKIFS Draft. It was pointed out in CT test that the difference of distance between a point of application of force and the end of starter notch (starting point of fatigue crack) may be important to estimate SCC crack growth rate. An anode dissolution current density was quantitatively evaluated using a derived equation.

저온하에서 LNG저장탱크용 멤브레인재(STS 304강)의 피로균열진전거동 (Fatigue Crack Growth Behavior of Membrane Material for LNG Storage Tank at Low Temperatures)

  • 김철수
    • 한국해양공학회지
    • /
    • 제14권1호
    • /
    • pp.23-28
    • /
    • 2000
  • The fatigue crack growth behavior of the cold-rolled STS 304 steel developed for membrane material of LNG storage tank was examined experimentally at 293K, 153K and 111K. The fatigue crack growth rate(do/dN) tends to increase as the stress ratio (R) increases over the testing temperature when compared at the same stress intensity factor range($\Delta$K). The effect of R on do/dN is more explicit at low temperatures than at room temperature. The resistance of fatigue crack growth at low temperatures is higher compared with that at room temperature which is attributed to the extent of strain-induced martensitic transformation at the crack tip. The temperature dependence of fatigue crack growth resistance is gradually vanished with an increase in $\Delta$K which correlates with a decreasing fracture toughness with decreasing temperature. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperature are mainly explained by the crack closure and the strengthening due to the martensitic transformation.

  • PDF

피로균열이 진전할 때 용접잔류응력의 재분포와 그 영향 (Redistribution of Welding Residual Stress and its Effects on Fatigue Crack Propagation)

  • 이용복;조남익
    • Journal of Welding and Joining
    • /
    • 제13권4호
    • /
    • pp.155-162
    • /
    • 1995
  • Redistribution of residual stress and its effects during fatigue crack propagates from tensile residual stress region in weldment are investigated. Tests are performed by using welded CCT specimens of structual rolling steel (SS400) and it makes fatigue crack propagate from tensile residual stress region. For this study tension-tension loading type is selected by external loading condition and magnetizing stress indicator is used correctly to measure redistribution of residual stress according to fatigue crack growth and number of loading cycles. From this result, it is proved that redistribution of residual stress is mainly consist of residual stress released by fatigue crack growth. When fatigue crack propagates from tensile residual stress region residual stress are redistributed and it makes fatigue crack growth rate largely increase. Fatigue crack growth rate is low in case of redistributed residual stress compare with initial distributed residual stress.

  • PDF

Fatigue Crack Retardation and Retardation Mechanism in Variable Loading (The Effects of Crack Tip Branching in Crack Growth Retardation)

  • Song, Sam-Hong;Kwon, Yun-Ki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권3호
    • /
    • pp.76-81
    • /
    • 2002
  • In order to study the fatigue crack and retardation mechanism in variable loading, the effects of crack tip branching in crack growth retardation were examined. The characteristics of crack tip branching behavior were considered with respect to microstructure and crack tip branching angle was examined. Crack tip branching was observed along the grain boundary of finite and pearlite structure. It was found that the branching angle ranges from 25 to 53 degrees. Using the finite element method, the variable of crack driving farce to branching angle was examined. The effective crack driving farce (K$\_$eff/) decreased as the branching angle increased. The rate of decrease was 33% for kinked type and 29% for forked one. It was confirmed that the effect of crack tip branching is a very important factor in crack growth retardation. Therefore, crack branching effect should be considered in building the hypothetical model to predict crack growth retardation.