• 제목/요약/키워드: Crack evolution

검색결과 125건 처리시간 0.025초

Low-Cost Flexible Strain Sensor Based on Thick CVD Graphene

  • Chen, Bailiang;Liu, Ying;Wang, Guishan;Cheng, Xianzhe;Liu, Guanjun;Qiu, Jing;Lv, Kehong
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850126.1-1850126.10
    • /
    • 2018
  • Flexible strain sensors, as the core member of the family of smart electronic devices, along with reasonable sensing range and sensitivity plus low cost, have rose a huge consumer market and also immense interests in fundamental studies and technological applications, especially in the field of biomimetic robots movement detection and human health condition monitoring. In this paper, we propose a new flexible strain sensor based on thick CVD graphene film and its low-cost fabrication strategy by using the commercial adhesive tape as flexible substrate. The tensile tests in a strain range of ~30% were implemented, and a gage factor of 30 was achieved under high strain condition. The optical microscopic observation with different strains showed the evolution of cracks in graphene film. Together with commonly used platelet overlap theory and percolation network theory for sensor resistance modeling, we established an overlap destructive resistance model to analyze the sensing mechanism of our devices, which fitted the experimental data very well. The finding of difference of fitting parameters in small and large strain ranges revealed the multiple stage feature of graphene crack evolution. The resistance fallback phenomenon due to the viscoelasticity of flexible substrate was analyzed. Our flexible strain sensor with low cost and simple fabrication process exhibits great potential for commercial applications.

Stiffness effect of testing machine indenter on energy evolution of rock under uniaxial compression

  • Tan, Yunliang;Ma, Qing;Wang, Cunwen;Liu, Xuesheng
    • Geomechanics and Engineering
    • /
    • 제30권4호
    • /
    • pp.345-352
    • /
    • 2022
  • When rock burst occurs, the damaged coal, rock and other fragments can be ejected to the roadway at a speed of up to 10 m/s. It is extremely harmful to personnel and mining equipment, and seriously affects the mining activities. In order to study the energy evolution characteristics, especially kinetic energy, in the process of rock mass failure, this paper first analyzes the energy changes of the rock in different stages under uniaxial compression. The formula of the kinetic energy of rock sample considering the energy from the indenter of the testing machine is obtained. Then, the uniaxial compression tests with different stiffness ratios of the indenter and rock sample are simulated by numerical simulation. The kinetic energy Ud, elastic strain energy Ue, friction energy Uf, total input energy U and surface energy Uθ of crack cracking are analyzed. The results show that: The stiffness ratio has influence on the peak strength, peak strain, Ud, Ue, Uθ, Uf and U of rock samples. The variation trends of strength, strain and energy with stiffness are different. And when the stiffness ratio increases to a certain value, if the stiffness of the indenter continues to increase, it will have no longer effect on the rock sample.

열처리 방법에 따른 SOI 기판의 스트레스변화 (Stress Evolution with Annealing Methods in SOI Wafer Pairs)

  • 서태윤;이상현;송오성
    • 한국재료학회지
    • /
    • 제12권10호
    • /
    • pp.820-824
    • /
    • 2002
  • It is of importance to know that the bonding strength and interfacial stress of SOI wafer pairs to meet with mechanical and thermal stresses during process. We fabricated Si/2000$\AA$-SiO$_2$ ∥ 2000$\AA$-SiO$_2$/Si SOI wafer pairs with electric furnace annealing, rapid thermal annealing (RTA), and fast linear annealing (FLA), respectively, by varying the annealing temperatures at a given annealing process. Bonding strength and interfacial stress were measured by a razor blade crack opening method and a laser curvature characterization method, respectively. All the annealing process induced the tensile thermal stresses. Electrical furnace annealing achieved the maximum bonding strength at $1000^{\circ}C$-2 hr anneal, while it produced constant thermal tensile stress by $1000^{\circ}C$. RTA showed very small bonding strength due to premating failure during annealing. FLA showed enough bonding strength at $500^{\circ}C$, however large thermal tensile stress were induced. We confirmed that premated wafer pairs should have appropriate compressive interfacial stress to compensate the thermal tensile stress during a given annealing process.

Analysis of quasi-brittle materials using two-dimensional polygon particle assemblies

  • Lee, Jong Seok;Rhie, Yoon Bock;Kim, Ick Hyun
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.713-730
    • /
    • 2003
  • This paper contains the results of the study on the development of fracture and crack propagation in quasi-brittle materials, such as concrete or rocks, using the Discrete Element Method (DEM). A new discrete element numerical model is proposed as the basis for analyzing the inelastic evolution and growth of cracks up to the point of gross material failure. The model is expected to predict the fracture behavior for the quasi-brittle material structure using the elementary aggregate level, the interaction between aggregate materials, and bond cementation. The algorithms generate normal and shear forces between two interfacing blocks and contains two kinds of contact logic, one for connected blocks and the other one for blocks that are not directly connected. The Mohr-Coulomb theory has been used for the fracture limit. In this algorithm the particles are moving based on the connected block logic until the forces increase up to the fracture limit. After passing the limit, the particles are governed by the discrete block logic. In setting up a discrete polygon element model, two dimensional polygons are used to investigate the response of an assembly of different shapes, sizes, and orientations with blocks subjected to simple applied loads. Several examples involving assemblies of particles are presented to show the behavior of the fracture and the failure process.

고온고압법에 의한 Type II, Type I aB 갈색 다이아몬드의 색향상 (Color Enhancement of the Type II and Type I aB Brown Diamonds into Colorless by HPHT Process)

  • 송정호;송오성
    • 한국세라믹학회지
    • /
    • 제49권3호
    • /
    • pp.221-225
    • /
    • 2012
  • It is possible to enhance the color of the natural diamond with a high pressure high temperature(HPHT) process. We employed a pyrophyllite tube cell and cubic press apparatus for HPHT treatment on the brown colored Type II (5.6 GPa/ $1700^{\circ}C$/ 52 min), and Type I aB(5.6 GPa/ $1650^{\circ}C$/ 30 min) diamond samples. We investigated the microstructure, Types, fluorescence, properties of the diamonds with an optical microscopy, FT-IR, photoluminescence(PL) spectroscopy, Diamond-View, and micro-Raman spectroscopy. Two tinted brown diamonds changed into colorless just after the HPHT process. Optical microscopy showed that no crack and significant inclusion evolution occurred during the HPHT process except the small graphite spot appeared in Type I aB sample. FTIR spectrum confirmed that no Type, amber center, and platelet defect change with the HPHT treatment. Diamond-View could not distinguish the HPHT treated diamonds from the naturals. PL spectroscopy showed that N3 and H3 color centers remained even after HPHT process. Consequently, we successfully changed the color of diamonds into colorless by 5.6 GPa HPHT process.

높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성 (Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability)

  • 황병철
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method

  • Cao, Peng;Feng, Decheng;Zhou, Changjun;Zuo, Wenxin
    • Computers and Concrete
    • /
    • 제14권5호
    • /
    • pp.527-546
    • /
    • 2014
  • Portland cement concrete, which has higher strength and stiffness than asphalt concrete, has been widely applied on pavements. However, the brittle fracture characteristic of cement concrete restricts its application in highway pavement construction. Since the polypropylene fiber can improve the fracture toughness of cement concrete, Polypropylene Fiber-Reinforced Concrete (PFRC) is attracting more and more attention in civil engineering. In order to study the effect of polypropylene fiber on the generation and evolution process of the local deformation band in concrete, a series of three-point bending tests were performed using the new technology of the digital speckle correlation method for FRC notched beams with different volumetric contents of polypropylene fiber. The modified Double-K model was utilized for the first time to calculate the stress intensity factors of instability and crack initiation of fiber-reinforced concrete beams. The results indicate that the polypropylene fiber can enhance the fracture toughness. Based on the modified Double-K fracture theory, the maximum fracture energy of concrete with 3.2% fiber (in volume) is 47 times higher than the plain concrete. No effort of fiber content on the strength of the concrete was found. Meanwhile to balance the strength and resistant fracture toughness, concrete with 1.6% fiber is recommended to be applied in pavement construction.

설계강도 40MPa 고강도 콘크리트를 적용한 교량 교각 구조물의 시험시공 (Application of High Strength Concrete with 40MPa Compressive Strength to the Concrete Bridge Piers)

  • 정해문;안태송;권영락;황재희;서봉영;심기술
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.159-160
    • /
    • 2009
  • 본 연구에서는 고강도 콘크리트의 교량 구조물 적용의 일환으로 현재 27MPa로 적용되고 있는 교각구조물에, 단면축소와 내구성 향상을 목적으로 40MPa 고강도 콘크리트를 시험적용하였다. 고강도 콘크리트 적용에 따라 교각의 단면을 재설계한 결과, 기둥단면은 0.6m, 코핑높이는 0.4m 감소되었고, 고강도 콘크리트를 시공한 결과, 철저한 품질관리와 양생관리를 통해 당초 우려되었던 수화열에 의한 온도균열이 발생하지 않는 고품질의 콘크리트 시공이 가능하였다.

  • PDF

Fabrication and Crystallization Behavior of BNN Thin Films by H-MOD Process

  • Lou, Jun-Hui;Lee, Dong-Gun;Lee, Hee-Young;Lee, Joon-Hyung;Cho, Sang-Hee
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.739-743
    • /
    • 2003
  • [ $Ba_2NaNb_5O_{15}$ ], hereafter BNN, thin films are attractive candidates for nonvolatile memory and electro-optic devices. In the present work, thin films that have different contents of Ba, Nb and Na have been prepared by H-MOD technique on silicon and Pt substrates. XRD and SEM were used to investigate the phase evolution behavior and the microstructure of the films. It was found that the films of about 500nm thick were crack-free and uniform in microstructure. Nb content strongly influenced the phase formation of the films, where unwanted phases were always formed at the stoichiometric BNN composition. However, the unwanted phases decreased with the increase of excess Nb content, and the single phase (tetragonal tungsten bronze structure) BNN thin film was obtained when the niobium content reached some point. From this study, the sub-solidus phase diagram below $850^{\circ}C$ for $BaO-Na_2O-Nb_2O_5$ ternary system is proposed.

  • PDF

초기분말의 결정상이 $Al_2O_3$를 소결 조제로한 고온가압 SiC 세라믹스의 기계적 특성에 미치는 영향 (Effect of Starting Crystallographic Phase on the Mechanical Properties of Hot-Pressed SiC Ceramics)

  • 정동익;강을손;최원봉;백용기
    • 한국세라믹학회지
    • /
    • 제29권3호
    • /
    • pp.232-240
    • /
    • 1992
  • Densification behavior, microstructural evolution, and mechanical properties of hot-pressed specimens using $\beta$-SiC and $\alpha$-SiC powder with Al2O3 additive were studied. Beta-SiC powder was fully densified as 205$0^{\circ}C$, but $\alpha$-SiC powder was at 210$0^{\circ}C$. The maximum flexural strength and the fracture toughness of the specimen hot-pressed using $\beta$-SiC powder were 681 MPa and 6.7 MPa{{{{ SQRT {m } }}, and thosevalues of specimen hot-pressed using $\alpha$-SiC powder were 452 MPa and 4.7 MPa{{{{ SQRT {m } }}, respectively. The strength superiority of specimen hot-pressed using $\beta$-SiC powder was due to the finer grain size, and higher density. The higher toughness of specimen hot-pressed using $\beta$-SiC powder than $\alpha$-SiC powder than $\alpha$-SiC powder was due to the crack deflection mechanism arised from the difference of thermal expansion coefficient between $\alpha$ and $\beta$-SiC phases which were co-existed in the sintered body.

  • PDF