• 제목/요약/키워드: Crack Velocity

검색결과 288건 처리시간 0.026초

Evaluation of Crack Behavior and Climate Monitoring of Ipseok-dae Columnar Joints and Jigong Neodeol Rock Blocks in Mudeungsan National Park (무등산국립공원 입석대 주상절리 및 지공너덜 암괴의 균열 거동과 기후 모니터링 평가)

  • Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • 제31권4호
    • /
    • pp.621-630
    • /
    • 2021
  • This study evaluated cracks and climate monitoring in Ipseok-dae columnar joints and Jigong Neodeol rock blocks in Mudeungsan National Park. The rocks' state of cracking and their surface temperatures were measured alongside air temperature, relative humidity, and wind velocity. The maximum crack behavior in Ipseok-dae was 0.367 mm at one point, and showed a slight tendency at other points. One in Jigong Neodeol was within 0.15 mm and showed a stable state with little change. The surface temperature of the Ipseok-dae columnar joints was higher on the side exposed to sunlight than on the shaded side. All blocks of Jigong Neodeol rock showed similar temperatures. The air temperature showed a similar distribution for both rock types. The air temperature showed a similar distribution for both Ipseok-dae and Jigong Neodeol. The relative humidity was mostly between 20% and 60% in Ipseok-dae and was between 20 and 70% in Jigong Neodeol. Both areas had low wind speeds, with maxima of 5 m/s in Ipseok-dae and 3 m/s in Jigong Neodeol. As a result, it is evaluated that crack behavior in Ipseok-dae columnar joints and Jigong Neodeol rock blocks have maintained a very stable state so far. The surface temperature, temperature, relative humidity, and wind velocity of the two areas showed small difference depending on the season, indicating that they were affected to some extent by the season. From a long-term perspective, this can continuously affect the deformation of the Ipseok-dae columnar joints or Jigong Neodeol rock blocks. Therefore, in order to accurately evaluate their stability, it is considered that the current microscopic delamination and exfoliation or the propagation and expansion of cracks should be continuously measured.

Diagnosis of Carburized Degradation in Cracking Tube by Ultrasonic Wave (초음파에 의한 열분해관의 침탄열화도 진단)

  • Kim, C.G.;Kim, S.T.;Cho, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제18권5호
    • /
    • pp.381-388
    • /
    • 1998
  • The ultrasonic method, which is well known as non-destructive test method, is widely used to evaluate the material damage caused by degradation practically. However, this method is just used for measuring the crack size and the thickness loss of tube. The purpose of this study is to investigate the applicability of the ultrasonic technique for the evaluation of carburized material and to suggest the correlations between the ultrasonic characteristics and carburized degradation. The miniaturized specimens($40{\times}20{\times}6.3mm$) are adopted from the HK-40 (25Cr-20Ni-0.4C) centrifugal cast tube after carburization treatment. Carburization was carried at $1200^{\circ}C$ by the pack method. The results of ultrasonic test present that the longitudinal wave velocity increased with the increase of carburized depth. The correlation between the longitudinal wave velocity and carburization was changed with the density and Young's modulus. Therefore, the average velocity in the materials carburized for 336 hours and the unused one were 5,840 m/s and 5,755 m/s at 5 MHz, respectively. With the obtained results from this study, it can be recognized that the technique using the ultrasonic velocity property is very useful method to evaluate the degree of carburized material non-destructively.

  • PDF

Nondestructive investigation of clay wall structure containing traditional mural paintings. - The clay walls having mural paintings housed in the protective building in Muwisa Temple, Kangjin, Jeollanamde Province - (전통 벽화의 토벽체 비파괴진단 조사연구 - 강진 무위사 벽화보존각내 벽화를 중심으로 -)

  • Chae, Sang-Jeong;Yang, Hee-Jae;Han, Kyeong-Soon
    • Journal of Conservation Science
    • /
    • 제18권
    • /
    • pp.51-62
    • /
    • 2006
  • This study, in order to do a nondestructive research on the mural walls kept in the protective house in Muwisa Temple, Kangjin, took four examinations; particle size analysis, XRD analysis, ultrasonic investigation, and thermo-infrared investigation. Component ratio of mural wall varied; clay of wall bodies consisted of gravel of 1.78 g, sand of 5.39 g, silt of 4.91 g and clay of 6.26 g. Ultrasonic velocity and one-axis compression strength tests done with eight mural-painted walls yield results as follows; the value of ultrasonic velocity ranged between 71.63 and 3610.11 m/s with the average of 417.44 m/s and on-axis compression strength ranged between 70.34 and $533.28kg/cm^2$ with the average of $83.23kg/cm^2$. The value increased in the order of Bosaldo(No.6)

  • PDF

Failure Examples Study Including with timing belt, Constant Velocity Boot and Weather strip on a Car (자동차의 타이밍벨트, 등속조인트 부트, 웨더 스트립에 관련된 고장사례 고찰)

  • Lee, Il Kwon;Lee, Jong Ho;Hwang, Han Sub;Yim, Ha Young;You, Chang Bae;Kim, Young Kyu;Kim, Choo Ha
    • Journal of the Korean Institute of Gas
    • /
    • 제19권1호
    • /
    • pp.6-11
    • /
    • 2015
  • This paper is to study the examples for rubber damage and weaken reliability of timing belt, constant velocity joint boot and weather strip in vehicle. The first example, when the service man replaced the new timing-belt of rubber material, he assembled the belt that was weaken it's contact surface because of material transform. He knew the abnormally tearing failure by friction action between belt and sprocket. The second example, it certified the fact that the grease is leaked out boot protecting of constant velocity joint by split of rubber surface because of durability badness. The third example, the weather stripe took the minutely tearing because of damage produced the material transform by crack of chemistry change. It certified the production phenomenon of a tiny noise by coming with outside air because of overlapped the rubber of weather stripe when driving after closing the door. Therefore, the driver must always manage the rubber system part of vehicle.

Investigation of lateral impact behavior of RC columns

  • Anil, Ozgur;Erdem, R. Tugrul;Tokgoz, Merve Nilay
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.123-132
    • /
    • 2018
  • Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or high-hazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load.

Finite Element Modeling of Perturbation Fields due to Colonies of Stress Corrosion Cracks(SCCs) in a Gas Transmission Pipeline (가스공급배관에서 응력부식균열 군에 의해 교란된 자속의 유한요소 모델링)

  • Yang, Sun-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제21권5호
    • /
    • pp.493-500
    • /
    • 2001
  • The detection of axial cracks using conventional MFL pig is a significant challenge in the gas pipeline inspection. In this study, a technique using interaction of circumferentially induced torrents with axial stress corrosion crack is presented. The feasibility of this technique is investigated using finite element modeling. Finite element analysis of such interaction is a difficult problem in terms of both computation time and memory requirements. The challenges arise due to the nonlinearity of material properties, the small sire of tight cracks relative to that of the magnetizer, and also time stepping involved in modeling velocity effects. This paper presents an approach based on perturbation methods. The overall analysis procedure is divided into 4 simple steps that can be performed sequentially. Modeling results show that this technique can effectively detect colonies of SCC as well as single SCC.

  • PDF

Observation of the Ground Subsidence in the Abandoned Gaeun Coal Mining Area using JERS-1 SAR (JERS-1 SAR를 이용한 가은 폐탄광 지역 지반침하 관측)

  • Jung Hahn Chul;Kim Sang-Wan;Kim Bok Chul;Min Kyung Duck;Won Joong-Sun
    • Economic and Environmental Geology
    • /
    • 제37권5호
    • /
    • pp.509-519
    • /
    • 2004
  • The ground subsidence that occurred in the abandoned coal mining area, Gaeun, Korea, was observed using 25 JERS-1 SAR interferograms from November 1992 to October 1998. We carried out measurements on a subset of image pixels corresponding to point-wise stable reflectors(PS: permanent scatterer) by exploiting a long temporal series of interferometric phases and compared it with the distribution map of in situ examined crack level. PSs could be identified by means of amplitude dispersion index and coherence of the interferograms and the density of PS was much higher in an urban area than in a mountainous region. The measured subsidence rate represented the average velocity in a period of image acquisition and excluded complex nonlinear displacements such as an abrupt collapse. The mean line-of-sight velocity in the study area is 0.19cm/yr and the estimation error is 0.18cm/yr. The center of the abandoned Gaeun coal mine(0.49cm/yr) and the area opposite Gaeun station(1.66cm/yr) were observed as the most highly subsiding areas.

Development and Application of IoT-based Contactless Ultraosonic System (IoT 기반 비접촉 초음파 측정 시스템 개발 및 적용)

  • Kim, Jihwan;Hong, Jinyoung;Kim, Rrulri;Woo, Ukyong;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제24권3호
    • /
    • pp.70-79
    • /
    • 2020
  • The main objective of this research to develop an IoT based wireless contactless ultrasonic system (ICUS) and its application to concrete structure. The developed system consists of 16 mems, 2Mhz digitizer, amplifying circuit, FPGA, and wifi module, enabling to measure leaky surface waves from concrete specimens without physical coupling process and wires. Multi-channel analysis is performed to improve the accuracy of data analysis, and the velocity of leaky surface waves and acoustics are derived. Field inspection of railroad concrete sleepers is conducted to evaluate the performance of the system and to compare the results with conventional ultrasonic pulse velocity (UPV). As a result of the field inspection, UPV was limited to evaluate damages. This is because crack pattern of railroad sleepers is parallel to ultrasonic ray path and accessibility of the railroad at the field is disadvantageous to contact-based UPV. On the other hand, ICUS possibly detect the damages as reduction of dynamic modulus by up to 59% compared to non-damaged specimen.

Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete

  • Tahmouresi, Behzad;Koushkbaghi, Mahdi;Monazami, Maryam;Abbasi, Mahdi Taleb;Nemati, Parisa
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.193-206
    • /
    • 2019
  • Although concrete is the most widely used construction material, its deficiency in shrinkage and low tensile resistance is undeniable. However, the aforementioned defects can be partially modified by addition of fibers. On the other hand, possibility of adding waste materials in concrete has provided a new ground for use of recycled concrete aggregates in the construction industry. In this study, a constant combination of recyclable coarse and fine concrete aggregates was used to replace the corresponding aggregates at 50% substitution percentage. Moreover, in order to investigate the effects of fibers on mechanical and durability properties of recycled aggregate concrete, the amounts of 0.5%, 1%, and 1.5% steel fibers (ST) and 0.05%, 0.1% and 0.15% polypropylene (PP) fibers by volumes were used individually and in hybrid forms. Compressive strength, tensile strength, flexural strength, ultrasonic pulse velocity (UPV), water absorption, toughness, elastic modulus and shrinkage of samples were investigated. The results of mechanical properties showed that PP fibers reduced the compressive strength while positive impact of steel fibers was evident both in single and hybrid forms. Tensile and flexural strength of samples were improved and the energy absorption of samples containing fibers increased substantially before and after crack presence. Growth in toughness especially in hybrid fiber-reinforced specimens retarded the propagation of cracks. Modulus of elasticity was decreased by the addition of PP fibers while the contrary trend was observed with the addition of steel fibers. PP fibers decreased the ultrasonic pulse velocity slightly and had undesirable effect on water absorption. However, steel fiber caused negligible decline in UPV and a small impact on water absorption. Steel fibers reduce the drying shrinkage by up to 35% when was applied solely. Using fibers also resulted in increasing the ductility of samples in failure. In addition, mechanical properties changes were also evaluated by statistical analysis of MATLAB software and smoothing spline interpolation on compressive, flexural, and indirect tensile strength. Using shell interpolation, the optimization process in areas without laboratory results led to determining optimal theoretical points in a two-parameter system including steel fibers and polypropylene.

Measurement of Crack Depth and Weathering Degree Using Ultrasonic Velocity and Deterioration Evaluation of the Unhyungung Stone Water Container (운현궁수조의 손상평가와 초음파 속도를 이용한 풍화도 및 균열심도 측정)

  • Chun, Yu-Gun;Lee, Chan-Hee;Jo, Seung-Nam;Jo, Yeong-Hoon;Park, Gi-Jung;Yang, Pil-Seung
    • Journal of Conservation Science
    • /
    • 제24권
    • /
    • pp.1-11
    • /
    • 2008
  • The Unhyungung Water Container in the possession of the Seoul Museum of History in Korea is consisted of a calcareous marble developed laminated bedding and numerous argillaceous veinlets. This monument should need to conservation treatment because of black discoloration and seriously numerous cracks. Vertical and horizontal cracks in the monument are developed following stratification and argillaceous veinlets that are relatively low coherence between the rock materials. We have proved that the material inducing discoloration on the surface is carbon which is formed by deposited organic matters. As the result of the ultrasonic measurements, although highly surface weathering degree, the physical properties of the Unhyungung Water Container is confirmed slightly weathered state. The depths of cracks in the monument are calculated at maximum 60mm in some cracks completely penetrating into the wall and at minimum 9mm in the other crack. The cracks, developed following veinlet, are revealed that there penetrate from an outer wall to an inside wall for the monument. And most depths of cracks, developed following stratification, are calculated 20 to 30mm. This result will offer a significant data for conservation of the Unhyungung Water Container.

  • PDF