• Title/Summary/Keyword: Crack Retardation

Search Result 101, Processing Time 0.025 seconds

A Study of Resistance of Fatigue Crack in Aluminum Alloy Plate Bonded with FRP (FRP 본딩한 알루미늄 판재의 피로균열 저항성에 관한 연구)

  • 윤한기;오세욱;박원조;허정원
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.117-126
    • /
    • 1994
  • APAL (Aramid Patched ALuminum alloy) was manufactured, which was a material that was consisting of a A12024-T3 aluminum alloy plate bonded to single-side of it with aramid/epoxy laminates. The aramid/epoxy laminates were bonded to it in condition of 1, 2 ply and fiber orientation of .+-.45, 0.deg./90.deg. Fatigue crack propagation tests were performed at stress ratio R-0.2, 0.5 with Al 2024-T3, APAL 45-1P, APAL 0/90-1P, APAL 45-2P, APAL 0/90-2P specimens to examine behavior of retardation in fatigue crack propagation. All the APAL specimens showed superior fatigue crack resistance. Number of cycle spended for crack to propagate from $a_{M}$=37 to $a_{M}$=65 mm in case of APAL 0/90-2P specimen was half that of Al 2024-T3 specimen. Fatigue crack propagation rate of APAL 0/90 specimens were retarded more compared to APAL 45 specimens and the amounts of retardation at R=0.5 were larger than that at R=0.2. It was found that the retardation in fatigue crack propagation was caused by intact fibers in the wake of crack.ack.

  • PDF

The Retardation Behaviors due to a Single Overload and High-Low Block Loads, and Retardation Model in 7075-T73 Aluminum Alloy (7075-T73 알루미늄 합금의 단일과대 및 고-저블럭하중에 의한 지연거동과 수명예측 모델)

  • 김정규;송달호;박병훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1605-1614
    • /
    • 1992
  • The effects of % overload (% O.L), baseline stress intensity factor range (.DELTA. $K_{b}$) and dimension-less crack depth (a/W) are examined for the retardation behaviors after a single overload and high-low block loads in 7075-T73 aluminum alloy. And wheeler model, which is one of the fatigue life prediction models, is modified to predict retardation life using these test results. The retardation cycles( $N_{d}$) increased with a decrease in a/W and an increase in % O.L. and (.DELTA. $K_{b}$) These effects are more severe after high-low block loads than single overload. In the case of single overload, the main mechanisms of the retardation are the crack closure and the relaxation of K due to crack branching. But in the case of high-low block loads, that of the main mechanism is the crack closure caused by the accumulated compressive residual stree at the crack tip, which is related with the contact of fracture surfaces. Test results were multiple regression analyzed and got regressed shaping correction factors, (n)$_{REG}$, as function of %O.L., a/W and (.DELTA. $K_{b}$) Wheeler model is modified by using these (n)$_{REG}$. The number of delay cycles calculated by modified Wheeler model were in good agreement with the test results of this study.y.udy.y.y.y.

A Study on the Delayed-Retardation of Fatigue Crack Growth Following Single Peak Overload (단일과대하중에 의한 피로균열추전의 지대지연현상에 관한 연구)

  • 오세욱;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1186-1192
    • /
    • 1990
  • It is well known that the fatigue crack growth retardation following overloads can be estimated reasonably well by the models of Wheeler and Willenborg. These models, however, can not explain the delayed-retardation revealed by every experimental result. This means that they necessarily have some qualitative defects in themselves despite of a fair approximation of quantity. In fact, they did not take into account the effects of the compressive portion of the overload cycle such as the change of reversed plastic zone size. The present study is focused on the acceleration effect in the reversed plastic zone in order to analyze qualitatively delayed-retardation phenomenon following single peak overload on the fatigue crack growth behavior using 2024-T3 aluminum alloy.

Retardation of Fatigue Crack Propagation by Single Overloading (단일과대하중에 의한 피로균열전파의 지연거동)

  • 김상철;함경춘;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.20-29
    • /
    • 1992
  • Effects of strain hardening exponents on the retardation behavior of fatigue crack propagation are experimentally investigated. The retardation of fatigue crack propagation seems to be induced by the crack closure at crack tip. The phenomenon of crack closure becomes remarkable with the increment of strain hardening exponent and magnitude of percent peak load. The ratio of crack growth increment(a$\_$d//w$\_$d/) is influenced by a single overloading (a$\_$d/) and estimated plastic zone size (W$\_$d/=2r$\_$y/) is increased according with the increasing of strain ha.dening exponents. The number of retarded crack growth cycles were (N$\_$d/) decreased as the baseline stress intensity factor .ange( K$\_$b/) was increased. Within the limitation of these experimental results obtained under the single overload, an empirical relation between crack retardation ratio (Nd/N*), strain hardening exponent (n) and percent peak load (%PL) has been proposed as; Nd/N*= exp [PL $.$ PL$.$A(n)+B(n) ] where, A(n)=${\alpha}$n+${\beta}$, B(n)=${\gamma}$n+$\delta$, PL=%PL/100 and ${\alpha}$=0.78, ${\beta}$=0.54, ${\gamma}$=0.58 and $\delta$=-0.01, It is interesting to note that all these constants are identical for materials such as aluminum(A3203), steel(S4SC), steel(SS41) and stainless steel(SUS316) used in this experimental study.

  • PDF

Effects of Strain Hardening Exponents on the Retardation of Fatigue Crack Propagation (가공경화지수가 피로균열 지연거동에 끼치는 영향)

  • 김상철;강동명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1193-1199
    • /
    • 1990
  • Effects of strain hardening exponents on the behavior of fatigue crack propagation are experimentally investigated. The retardation effect of fatigue crack propagation after single overloading is investigated in relation to strain hardening exponent and crack closure. A relationship between crack opening ratio and strain hardening exponents is inspected through an examination of the crack closure behavior. An empirical equation relating retardation effect of fatigue crack propagation after single overloading, percent peak load and strain hardening exponent of materials is proposed.

A Study on the Effect of Overloading on Fatigue Life (과대하중이 피로수명에 미치는 영향에 관한 연구)

  • 김경수;신병천;심천식;박진영;조형민
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • Ships and ocean structures are subjected to random loads caused by irregular waves. The irregularity of amplitude from random loading affects on fatigue crack growth and fatigue life. However the effects of irregularity of loading on fatigue including random loading have not been explained exactly. Therefore in this paper crack growth tests on DENT specimens under constant-amplitude loading including a single tensile overload are conducted to investigate the effect of overload on crack growth rate. The size of plastic zone and crack growth rate before and after a single tensile overloading are measured using ESPI system. Crack growth retardation model that is characterized by crack growth length and the size of plastic zone was proposed and compared with test result. From the research, the validity of proposed model is examined on crack growth retardation, and consequently fatigue life.

Study for Retardation Phenomenon (균열 성장 지연현상에 대한 연구)

  • Kang, Yong-Goo;Lee, Tae-Won;Kim, Dong-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.42-49
    • /
    • 2013
  • In this study, in order to analyze the crack retardation behaviors, effective plastic zone concept was proposed. By use of the proposed concept, crack retardation period, compressive residual stress and variation of effective plastic zone shapes were obtained. The results were compared with those of Willenborg model. Retardation period, compressive residual stress and effective plastic zone size obtained by using effective plastic zone concept were larger then the results obtained by using Willenborg analysis. Effective stress intensity factors obtained by using effective plastic zone concept were smaller then the results obtained by using Willenborg analysis.

Calibration of crack growth model for damage tolerance analysis (손상허용해석을 위한 균열성장모델 교정)

  • 주영식;김재훈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.67-77
    • /
    • 2002
  • This paper introduces the calibration results of the fatigue crack growth models for damage tolerance analysis of the aircraft structures. Generalized Willenborg model and Wheeler model are calibrated with experimental data tested under the load spectrum of a trainer. The retardation factors such as, shut-off ratio in Generalized Willenborg model and shaping exponent in Wheeler model, are evaluated for aluminum alloys AL2024-T3511, AL7050-T7451 and AL7075-T73511. It is shown that the retardation effect of the crack growth rate depends on the yield strength of material and the maximum stress in the load spectrum. Generalized Willenborg model and Wheeler model give satisfactory prediction of crack growth life but the calibration of the experimental parameters with test is required.

The Fatigue Crack Growth Behavior of Laser Welded Sheet Metal Due to Single Overload (과대하중에 의한 레이저 용접 판재의 피로균열 전파거동)

  • 조우강;오택열;곽대순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.854-858
    • /
    • 2002
  • In this study, Fatigue crack growth behavior of the laser welded sheet metal due to a single overload was investigated. From Fatigue crack propagation test, it was observed that the retardation of fatigue crack growth has been more effective in the welded specimen than in the base metal. And if the distance between the welded part and the position of overload is too close the retardation of fatigue crack growth at the welded part has been decreased. From FEM analysis, it was observed the retardation has been more effective compressive residual stress than plastic zone.

  • PDF

A Study on Corrosion Fatigye Crack Propagation Behaviors due to a Single Overload (단일과대하중하의 부식피로균열진전거동에 관한 연구)

  • 강동명;이하성;우창기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.481-485
    • /
    • 1997
  • 6063-T5 alloys are tested in laboratory air, water and 3% NaCl solution to investigate the effects of corrosive environment on the retardation behavior through single overload fatigue test. Also, the fatigue crack propagation and the crack closure behavior are studied. The results obtained in this experimental study are summarized as follows: 1) Behaviors of fatigue crack growth retardation are observed in water and 3% NaCl solution as they do in air. The number of delay cycles and the size of affected region by single overload decrease greatly in water and 3% NaCl compared with those in air. 2) In fractographic results, the overload marking by single overload appear remarkably in air, but indistinctly in water and 3% NaCl solution. 3) The effect of crack closure on crack propagation is most remarkable in the beginning of crack propagation. With crack propagation, the crack closure level and its effect decrease greatly.

  • PDF