• Title/Summary/Keyword: Crack Propagation path

Search Result 92, Processing Time 0.024 seconds

Mechanical Properties of AlN/hBN Ceramic Composites (AlN/hBN 복합재료의 기계적 성질)

  • Lee, Jaehyung;Ahn, Hyun-Wook;Yoon, Young-Sik;Cho, Myeong-Woo;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.582-587
    • /
    • 2005
  • AlN-BN ceramic composites were fabricated and their mechanical properties were investigated. The relative density of hot-pressed composites decreased with increasing BN content, but over $99\%$ could be obtained with 30 $vol\%$ BN in AlN. YAG was formed in the composites and monolithic AlN as a second phase by the reaction between $Y_2O_3$, added as sintering aid, and $Al_2O_3$. As expected, Vickers hardness and Young's modulus decreased with increasing BN content. The three-point flexural strength also showed similar behavior decreasing from 500 MPa of monolith down to 250 MPa by the addition 30 $vol\%$ BN. However, interestingly, the standard deviation of the strength values decreased significantly as BN was added to AlN. As a result, the Weibull modulus of the AlN-30 $vol\% BN composite was 21.3, which was extremely high. Fractography and crack path studies revealed that BN platelets induced grain pull-out and crack bridging in a bigger scale during crack propagation. Consequently, fracture toughness increased as more BN was added, reaching 4.5 $MPa\sqrt{m}$ at 40 $vol\%$ BN.

The effect of welding parameters on the formation of discontinuities in the laser fusion zone between Fe-Co-W sintered segment and mild steel (Fe-Co-W 소결체와 탄소강의 레이저 용융부 결함형성에 미치는 공정변수의 영향)

  • Kim S. W.;Yoon B. H.;Jung W. G.;Lee C. H.
    • Laser Solutions
    • /
    • v.7 no.3
    • /
    • pp.25-36
    • /
    • 2004
  • This study was performed to clarification of the formation of weld discontinuities in the dissimilar laser fusion zone. Welding parameters were beam power of 1300, 1430, 1560, and 1700 W and travel speed of 1, 1.3, and 1.7 m/min. Most cavities in the fusion zone were observed near the tip. Cavities in the fusion zone observed to be formed and grown from pores in the tip. More cavities were formed as the beam position moves to the tip side. Small cavities were decreased but large cavities were increased when the energy input increased. W content in the fusion zone was increased with heat input and as the beam position close to the tip. In the fusion zone, W content in the dendrite boundary was increased with heat input. Considering the propagation path and fracture morphology, cracks were solidification cracking, and were initiated and propagated along the dendrite boundaries. The formation of cracks might be related with the W rich ${\mu}$ phase which was formed in the grain boundaries and dendrite boundaries.

  • PDF

Effect of Cd addition on the Fatigue Properties of Al-Cu-Mn cast alloy (Al-Cu-Mn 주조합금의 피로성질에 미치는 Cd 첨가의 영향)

  • Kim, Gyeong-Hyeon;Lee, Byeong-Hun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.300-304
    • /
    • 2001
  • Effect of Cd addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. With increasing Cd content, fatigue life and tensile strength were increased. It was found that the fatigue strength was 115MPa and the fatigue ratio was 0.31. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in the Cd-free Al-Cu- Mn cast alloy to 401MPa in the 0.15%Cd-containing alloy.

  • PDF

Effect of Sn Addition on the Fatigue Properties of Al-Cu-Mn Cast Alloy (Al-Cu-Mu 주조합금의 피로성질에 미치는 Sn 첨가의 영향)

  • Kim, Kyung-Hyun;Kim, Jeung-Dae;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.248-253
    • /
    • 2002
  • Effect of Sn addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. Fatigue life showed the maximum value of 5450cycles in the Al-Cu-Mn alloy containing 0.10%Sn, but decreased rapidly beyond 0.20% of Sn additions. It was found that the fatigue strength was 132MPa and fatigue ratio was 0.31 in the alloy containing 0.10%Sn. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in 7he Sn-free Al-Cu-Mn cast alloy to 429MPa in the alloy containing 0.10%Sn. But above 0.20%Sn additions, tensile strength was decreased by the segregation of Sn.

Effect of VC Addition on the Microstructure & Mechanical Properties of Ti(CN)-based Cermet (VC 첨가가 Ti(CN)계 써메트의 미세구조 및 기계적 성질에 미치는 영향)

  • 안성용;강신후
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1316-1322
    • /
    • 1998
  • The amount of VC and C/N ratio in Ti(CN) was varied to investigate the effect of VC addition on the mi-crostructural change in Ti(CN)-Ni system. As the amount of VC addition increases in Ti(C0.7N0.3)-20Ni sys-tem a complete solid solution was observed in Ti(C0.7N0.3)-20Ni-25VC system. It implies that the ratio of the dissolution rates of Ti(C0.7N0.3)to that of VC is nearly 2:1 at the sintering conditions used in this study. It was found from the experiments that the system composed of the Ti(C0.7N0.3) phase exhibits a rimless structure and relatively small amount of solid solution. That is among Ti(C0.7N0.3) phase exhibits a rimless structure and relatively small amount of solid solution. This is among Ti(C1-xNx) phases the dissolution rate of Ti(C0.3N0.7) is the lowest. Also fracture toughness(KIC) of the cermet was measured by indentation method. Attentions were paid to crack propagation path to look for a dominant fracture mode and to cor-relate it with fracture toughness values. The fracture toughness was relatively high with the addition of VC content. But the addition of a large VC content reduced the overall toughness of the cermet. This result is explained with the difference in fracture mode.

  • PDF

Fabrication and Fracture Properties of Alumina Matrix Composites Reinforced with Carbon Nanotubes (Carbon Nanotube로 강화된 알루미나 기지 복합재료의 제조 및 파괴특성)

  • Kim, Sung Wan;Chung, Won Sub;Sohn, Kee-Sun;Son, Chang-Young;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • In this study, alumina matrix composites reinforced with carbon nanotubes (CNTs) were fabricated by ultrasonic dispersion, ball milling, mixing, compaction, and sintering processes, and their relative density, electrical resistance, hardness, flexure strength, and fracture toughness were evaluated. 0~3 vol.% of CNTs were relatively homogeneously dispersed in the composites in spite of the existence of some pores. The three-point bending test results indicated that the flexure strength increased with increasing volume fraction of CNTs, and reached the maximum when the CNT fraction was 1.5 vol.%. The fracture toughness increased as the CNT fraction increased, and the fracture toughness of the composite containing 3 vol.% of CNTs was higher by 40% than that of the monolithic alumina. According to observation of the crack propagation path after the indentation fracture test, a new toughening mechanism of grain interface bridging-induced CNT bridging was suggested to explain the improvement of fracture toughness in the alumina matrix composites reinforced with CNTs.

A Study on AE Signal Analysis of Composite Materials Using Matrix Piezo Electric Sensor (매트릭스형 피에조센서를 이용한 복합재료 AE신호 분석에 관한 연구)

  • Yu, Yeun-Ho;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on non-destructive testing methods has become an important research area for improving their reliability and safety. AE (acoustic emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the initiation and growth of crack, plastic deformation, fiber breakage, matrix cleavage, or delamination. In the paper, AE signals generated under uniaxial tension were measured and analyzed using the $8{\times}8$ matrix piezo electric sensor. The electronic circuit to control the transmitting distance of AE signals was designed and constructed. The optical data storage system was also designed to store the AE signal of 64channels using LED (light emitting diode) elements. From the tests, it was shown that the source location and propagation path of AE signals in composite materials could be detected effectively by the $8{\times}8$ matrix piezo electric sensor.

Mechanical Behavior of Weldbond Joint of 1.2GPa Grade Ultra High Strength TRIP Steel for Car Body Applications (차체용 1.2GPa급 초고장력 TRIP강의 Weldbond 접합부의 기계적 거동)

  • Lee, Jong-Dae;Lee, So-Jeong;Bang, Jung-Hwan;Kim, Dong-Cheol;Kang, Mun-Jin;Kim, Mok-Soon;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.44-49
    • /
    • 2014
  • The effect of weldbond hybrid joining process on the mechanical behavior of single lap and L-tensile joints was investigated for the newly developed 1.2GPa grade ultra high strength TRIP(transformation induced plasticity) steel. In the case of single lap shear behavior, the weldbond joint of 1.2GPa TRIP steel showed lower maximum tensile load and elongation than that of the adhesive bonding only. It was considered to be due to the reduction of real adhesion area, which was caused by the degradation of adhesive near the spot weld, and the brittle fracture behavior of the spot weld joint. In the case of L-tensile behavior, however, the maximum tensile load of the weldbond joint of 1.2GPa TRIP steel was dramatically increased and the fracture mode was change to the base metal fracture which is desirable for the spot weld joint. These synergic effect of the weldbond hybrid joining process in 1.2GPa TRIP steel was considered to be due to the stress dissipation around the spot weld joint by the presence of adhesive which resulted in the change of crack propagation path.

In-site Processing and Mechanical Properties of Ti/TiB Composites (반응생성에 의한 Ti/TiB 복합재료의 제조와 기계적 성질)

  • Jeong, Hui-Won;Lee, Yong-Tae
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.307-314
    • /
    • 1999
  • The effect of manufacturing variables, such as reactant powder$(TiB_2, B_4C)$, sintering temperature, and sintering time has been investigated on the microstructure and the mechanical properties of in-situ processed Ti/TiB composites. The mechanical properties were evaluated by measuring the compressive yield strength. The compressive yield strength of the in-situ processed composites was higher than that of the Ti-6AI-4V. The compressive yield strength of the composite made with TiE, reactant powder was higher than that of $B_4C$, mixed at the same volume fraction of reinforcement. It is because bonding nature between the matrix and the $TiB_2$, reactant powder was more strong than that of the other materials. It was proven by the examining the crack propagation path.

  • PDF

Correlation between Microstructure and Charpy Impact Properties of FCAW HAZ of Thick Steel Plates for Offshore Platforms (해양플랜트용 후판강의 FCAW HAZ 미세조직과 샤르피 충격 특성의 상관관계)

  • Lee, Hun;Lee, Hyunwook;Cho, Sung Kyu;Choi, Dongki;Kim, Hyoung Chan;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.497-504
    • /
    • 2019
  • In this study, the correlation between microstructure and Charpy impact properties of FCAW(Flux cored arc welding) HAZ(Heat affected zone) of thick steel plates for offshore platforms was investigated. The 1/4 thickness(1/4t) location HAZ specimen had a higher volume fraction of bainite and finer grain size of acicular ferrite than those of the 1/2 thickness (1/2t) location HAZ specimen because of the post heat effect during the continuous FCAW process. The Charpy impact energy at $-20^{\circ}C$ of the 1/4t location HAZ specimen was lower than that of the 1/2t location HAZ specimen because of the high volume fraction of coarse bainite. The Charpy impact energy at -40 and $-60^{\circ}C$ of the 1/2t location HAZ specimen were higher than those of the 1/2t location HAZ specimen because the ductile fracture occurred in the fine acicular ferrite and martensite regions. In the ductile fracture mode, the deformed regions were observed in fine acicular ferrite and martensite regions. In the brittle fracture mode, long crack propagation path was observed in bainite regions.