• Title/Summary/Keyword: Crack Propagation Stage

Search Result 102, Processing Time 0.018 seconds

Characterization of Contact Surface Damage in a Press-fitted Shaft below the Fretting Fatigue Limit (피로한도 이하에서 발생하는 압입축의 접촉손상 특성)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Ham, Young-Sam;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.42-47
    • /
    • 2010
  • In this paper, the characteristics of contact surface damage due to fretting in a press-fitted shaft below the fretting fatigue limit are proposed by experimental methods. A series of fatigue tests and interrupted fatigue tests of small scale press-fitted specimen were carried out by using rotating bending fatigue test machine. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that fretting fatigue cracks were initiated even under the fretting fatigue limit on the press-fitted shafts by fretting damage. The fatigue cracks of press-fitted shafts were initiated from the edge of contact surface and propagated inward in a semi-elliptical shape. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. After steep increasing, the increase of wear rate is nearly constant under the load condition below the fretting fatigue limit. It is thus suggested that the fretting wear must be considered on the fatigue life evaluation because the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in the press-fitted structures.

Study on Crack Monitoring System in Steel Structure (강부재의 균열 모니터링에 관한 연구)

  • Lee, Jae-Sun;Chang, Kyong-Ho;Hwang, Jee-Hoon;Park, Hyun-Chan;Jeon, Jun-Tai;Kim, You-Chul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.159-167
    • /
    • 2011
  • Steel structure construction is currently increasing on account of the many merits of steel structures. Due to numerous environmental factors, many cracks and extensive corrosion occur in steel structures, which cause the deterioration of the performance and life cycle of such structures. Maintenance of steel structures is thus strongly demanded, for safety control. The inspection methods that are currently being used, however, are very limited and can detect only local defects in steel structures. They also take much time to use and incur high maintenance costs. Moreover, such methods cannot be applied to huge steel structures, which men find unapproachable. They also require much time due to the need for periodic checks, and may lead to cost loss. Therefore, the development of a monitoring system that can detect defects in whole structures and can reduce the repair and strengthening costs at an early stage is very much needed. In this study, the generation and propagation of cracks were monitored via the electric-potential-drop method (EPDM).