• Title/Summary/Keyword: Crack Mouth

Search Result 54, Processing Time 0.025 seconds

Effect of basalt fibers on fracture energy and mechanical properties of HSC

  • Arslan, Mehmet E.
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.553-566
    • /
    • 2016
  • Fracture energy is one of the key parameters reveal cracking resistance and fracture toughness of concrete. The main purpose of this study is to determine fracture behavior, mechanical properties and microstructural analysis of high strength basalt fiber reinforced concrete (HSFRC). For this purpose, three-point bending tests were performed on notched beams produced using HSFRCs with 12 mm and 24mm fiber length and 1, 2 and $3kg/m^3$ fiber content in order to determine the value of fracture energy. Fracture energies of the notched beam specimens were calculated by analyzing load versus crack mouth opining displacement curves by the help of RILEM proposal. The results show that the effects of basalt fiber content and fiber length on fracture energy are very significant. The splitting tensile and flexural strength of HSFRC increased with increasing fiber content whereas a slight drop in flexural strength was observed for the mixture with 24mm fiber length and $3kg/m^3$ fiber content. On the other hand, there was no significant effect of fiber addition on the compressive strength and modulus of elasticity of the mixtures. In addition, microstructural analysis of the three components; cement paste, aggregate and basalt fiber were performed based on the Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy examinations.

Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method

  • Cao, Peng;Feng, Decheng;Zhou, Changjun;Zuo, Wenxin
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.527-546
    • /
    • 2014
  • Portland cement concrete, which has higher strength and stiffness than asphalt concrete, has been widely applied on pavements. However, the brittle fracture characteristic of cement concrete restricts its application in highway pavement construction. Since the polypropylene fiber can improve the fracture toughness of cement concrete, Polypropylene Fiber-Reinforced Concrete (PFRC) is attracting more and more attention in civil engineering. In order to study the effect of polypropylene fiber on the generation and evolution process of the local deformation band in concrete, a series of three-point bending tests were performed using the new technology of the digital speckle correlation method for FRC notched beams with different volumetric contents of polypropylene fiber. The modified Double-K model was utilized for the first time to calculate the stress intensity factors of instability and crack initiation of fiber-reinforced concrete beams. The results indicate that the polypropylene fiber can enhance the fracture toughness. Based on the modified Double-K fracture theory, the maximum fracture energy of concrete with 3.2% fiber (in volume) is 47 times higher than the plain concrete. No effort of fiber content on the strength of the concrete was found. Meanwhile to balance the strength and resistant fracture toughness, concrete with 1.6% fiber is recommended to be applied in pavement construction.

Mechanical and fracture properties of glass fiber reinforced geopolymer concrete

  • Midhuna, M.S.;Gunneswara Rao, T.D.;Chaitanya Srikrishna, T.
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.29-45
    • /
    • 2018
  • This paper investigates the effect of inclusion of glass fibers on mechanical and fracture properties of binary blend geopolymer concrete produced by using fly ash and ground granulated blast furnace slag. To study the effect of glass fibers, the mix design parameters like binder content, alkaline solution/binder ratio, sodium hydroxide concentration and aggregate grading were kept constant. Four different volume fractions (0.1%, 0.2%, 0.3% and 0.4%) and two different lengths (6 mm, 13 mm) of glass fibers were considered in the present study. Three different notch-depth ratios (0.1, 0.2, and 0.3) were considered for determining the fracture properties. The test results indicated that the addition of glass fibers improved the flexural strength, split tensile strength, fracture energy, critical stress intensity factor and critical crack mouth opening displacement of geopolymer concrete. 13 mm fibers are found to be more effective than 6 mm fibers and the optimum dosage of glass fibers was found to be 0.3% (by volume of concrete). The study shows the enormous potential of glass fiber reinforced geopolymer concrete in structural applications.

Behavior of recycled steel fiber-reinforced concrete beams in torsion- experimental and numerical approaches

  • Mohammad Rezaie Oshtolagh;Masood Farzam;Nima Kian;Hamed Sadaghian
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.173-184
    • /
    • 2023
  • In this study, mechanical, flexural post-cracking, and torsional behaviors of recycled steel fiber-reinforced concrete (RSFRC) incorporating steel fibers obtained from recycling of waste tires were investigated. Initially, three concrete mixes with different fiber contents (0, 40, and 80 kg/m3) were designed and tested in fresh and hardened states. Subsequently, the flexural post-cracking behaviors of RSFRCs were assessed by conducting three-point bending tests on notched beams. It was observed that recycled steel fibers improve the post-cracking flexural behavior in terms of energy absorption, ductility, and residual flexural strength. What's more, torsional behaviors of four RSFRC concrete beams with varying reinforcement configurations were investigated. The results indicated that RSFRCs exhibited an improved post-elastic torsional behaviors, both in terms of the torsional capacity and ductility of the beams. Additionally, numerical analyses were performed to capture the behaviors of RSFRCs in flexure and torsion. At first, inverse analyses were carried out on the results of the three-point bending tests to determine the tensile functions of RSFRC specimens. Additionally, the applicability of the obtained RSFRC tensile functions was verified by comparing the results of the conducted experiments to their numerical counterparts. Finally, it is noteworthy that, despite the scatter (i.e., non-uniqueness) in the aspect ratio of recycled steel fiber (as opposed to industrial steel fiber), their inclusion contributed to the improvement of post-cracking flexural and torsional capacities.

The Effect of Stress on SCC of Heat Exchanger Tube for LNG Vessel (LNG선박용 열교환기 세관의 SCC에 미치는 응력의 영향)

  • Jeong Hae Kyoo;Lim Uh Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.22-32
    • /
    • 2003
  • Al-brass material is generally used at the state of plastic deformation, for example; bending, extension of bell mouth at shell and tube type heat exchanger. And SCC(stress corrosion cracking) of Al-brass material will be affected by residual stress as plastic deformation. SCC results from synergism between mechanical factor and corrosion environment. Mechanical factor is stress that directly relates with stress intensity factor at the crack tip. This paper was studied on the effect of stress on SCC of Al-brass tube under in $3.5\%$ NaCl. + $0.1\%\;NH_4OH$ solution by constant displacement tester. Increasing of acidified water flow into sea and speeds up corrosion rate of Al-brass which is used as a tube material of vessel heat exchanger by polluted coast seawater. The experimental results are as follow The latent time of SCC occurrence gets longer as the initial stress intensity factor($K_{Ii}$) gets lower The main crack was propagated as the initial stress intensity factor($K_{Ii}$) gets higher, and secondary cracks occurred by electro-chemical factor a(ter stage of released stress. Dezincification phase showed around the crack, and the range of dezincification gets wider as the initial stress intensity factor($K_{Ii}$) gets higher.

  • PDF

Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete (강섬유 보강 초고성능 콘크리트의 재료특성 및 휨 거동 역학적 특성)

  • Kim, Kyoung-Chul;Yang, In-Hwan;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • This paper concerns the flexural behavior of steel fiber-reinforced ultra-high-performance concrete (UHPC) beams with compressive strength of 150 MPa. It presents experimental research results of hybrid steel fiber-reinforced UHPC beams with steel fiber content of 1.5% by volume and steel reinforcement ratio of less than 0.02. This study aims at investigating of compressive and tensile behavior of UHPC to perform a reasonable prediction for flexural capacity of UHPC beams. Tensile behavior modeling was performed using load-crack mouth opening displacement relationship obtained from bending test. The experimental results show that steel fiber-reinforced UHPC is in favor of cracking resistance and ductility of beams. The ductility indices range from 1.6 to 3.0, which means high ductility of hybrid steel fiber-reinforced UHPC. Test results and numerical analysis results for the moment-curvature relationship are compared. Though the numerical analysis results for the bending capacity of the UHPC beam without rebar is larger than test result, the overall comparative results show that the bending capacity of steel fiber-reinforced UHPC beams with compressive strength of 150 MPa can be predicted by using the established method in this paper.

Effets of Steel Fiber Contents on Flexural Creep Behavior of High-Strength Concrete (강섬유 혼입률에 따른 고강도 콘크리트의 휨 크리프 특성)

  • Lim, Seong-Hoon;Kim, Dong-Hwi;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • In this paper, the flexural creep behavior of hooked-end steel fiber reinforced high-strength concrete was evaluated to investigate the steel fiber content influence on long-term behavior of flexural members. An experimental program consisted of nine prismatic beam specimens with dimensions of 150 × 150 × 600mm reinforced with different contents of steel fiber (0, 0.75 and 1.5% at the volume fraction). To introduce flexural creep loading to notched prismatic beam specimens, a four-point bending test setup was used. The sustained load with 40% of the flexural strength was applied by means of a lever system and controlled by a load cell for 90 days. During sustained loading, crack mouth opening displacement (CMOD) was monitored. Conventional flexural test after creep tests were carried out to evaluate the residual capacity of each specimen. Test results showed that steel fiber content has a significant effect on the flexural creep behavior of high-strength concrete and long-term flexural load with 40% of flexural strength doesn't generate negative effects on the residual capacity of steel fiber reinforced high-strength concrete.

Fracture Characteristics of Polypropylene Fiber Reinforced Concrete (폴리프로필렌 섬유보강 콘크리트의 파괴특성 연구)

  • Shin-Won Paik
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.230-240
    • /
    • 1997
  • An experimental research investigation of the fracture properties of polypropylene fiber reinforced concrete is reported. Fibers used in this experiment were two types, monofilament and fibrillated polypropylene fibers. Fiber length was 19 mm, and volume fractions were 0, 1, 2, and 3%. Also, as initial notch depths influence the fracture properties of fiber reinforced concrete, the notch depth ratios by specimen height were 0.15, 0.30 and 0.45. The main objective of this experimental program is to obtain the load-deflection and the load-CMOD curves, to investigate the fracture properties of the polypropylene fiber reinforced concretes. Therefore, the flexural specimen testings on the four-point bending were conducted. Then, the load-load point displacement and the load-crack mouth opening displacement curves were measured. The effects of different volume fractions of the monofilament and the fibrillated polypropylene fiber reinforced concrete on the compressive strength, flexural strength and toughness, stress intensity factor, and fracture energy were investigated through the experimental results.

  • PDF

Multi-Scale finite element investigations into the flexural behavior of lightweight concrete beams partially reinforced with steel fiber

  • Esmaeili, Jamshid;Ghaffarinia, Mahdi
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.393-405
    • /
    • 2022
  • Lightweight concrete is a superior material due to its light weight and high strength. There however remain significant lacunae in engineering knowledge with regards to shear failure of lightweight fiber reinforced concrete beams. The main aim of the present study is to investigate the optimum usage of steel fibers in lightweight fiber reinforced concrete (LWFRC). Multi-scale finite element model calibrated with experimental results is developed to study the effect of steel fibers on the mechanical properties of LWFRC beams. To decrease the amount of steel fibers, it is preferred to reinforce only the middle section of the LWFRC beams, where the flexural stresses are higher. For numerical simulation, a multi-scale finite element model was developed. The cement matrix was modeled as homogeneous and uniform material and both steel fibers and lightweight coarse aggregates were randomly distributed within the matrix. Considering more realistic assumptions, the bonding between fibers and cement matrix was considered with the Cohesive Zone Model (CZM) and its parameters were determined using the model update method. Furthermore, conformity of Load-Crack Mouth Opening Displacement (CMOD) curves obtained from numerical modeling and experimental test results of notched beams under center-point loading tests were investigated. Validating the finite element model results with experimental tests, the effects of fibers' volume fraction, and the length of the reinforced middle section, on flexural and residual strengths of LWFRC, were studied. Results indicate that using steel fibers in a specified length of the concrete beam with high flexural stresses, and considerable savings can be achieved in using steel fibers. Reducing the length of the reinforced middle section from 50 to 30 cm in specimens containing 10 kg/m3 of steel fibers, resulting in a considerable decrease of the used steel fibers by four times, whereas only a 7% reduction in bearing capacity was observed. Therefore, determining an appropriate length of the reinforced middle section is an essential parameter in reducing fibers, usage leading to more affordable construction costs.

Effect of Aligned Steel Fibers by a Solenoid on Flexural Fracture Behavior (솔레노이드에 의해 정렬된 강섬유가 휨파괴 거동에 미치는 영향)

  • Gyu-Pil Lee;Do-Young Moon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.193-200
    • /
    • 2023
  • This paper investigates the effect of directional alignment of steel fibers using an electromagnetic field on the flexural fracture behavior of steel fiber reinforced concrete. A specially designed and manufactured solenoid, capable of aligning steel fibers in the longitudinal direction of the beam specimen, was employed for this purpose. Beam specimens with a design strength of 30 MPa were produced, and failure tests were conducted on specimens exposed to electromagnetic fields and those without exposure. Experimental variables included the mixing ratio and aspect ratio of steel fibers. The results of the experiments revealed a slight increase in flexural strength and crack mouth opening displacement at the maximum load for specimens exposed to the electromagnetic field. Notably, a significant enhancement in fracture energy was observed.