• 제목/요약/키워드: Crack Morphology Parameter

검색결과 2건 처리시간 0.015초

Estimation of Leak Rate Through Cracks in Bimaterial Pipes in Nuclear Power Plants

  • Park, Jai Hak;Lee, Jin Ho;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1264-1272
    • /
    • 2016
  • The accurate estimation of leak rate through cracks is crucial in applying the leak before break (LBB) concept to pipeline design in nuclear power plants. Because of its importance, several programs were developed based on the several proposed flow models, and used in nuclear power industries. As the flow models were developed for a homogeneous pipe material, however, some difficulties were encountered in estimating leak rates for bimaterial pipes. In this paper, a flow model is proposed to estimate leak rate in bimaterial pipes based on the modified Henry-Fauske flow model. In the new flow model, different crack morphology parameters can be considered in two parts of a flow path. In addition, based on the proposed flow model, a program was developed to estimate leak rate for a crack with linearly varying cross-sectional area. Using the program, leak rates were calculated for through-thickness cracks with constant or linearly varying cross-sectional areas in a bimaterial pipe. The leak rate results were then compared and discussed in comparison with the results for a homogeneous pipe. The effects of the crack morphology parameters and the variation in cross-sectional area on the leak rate were examined and discussed.

타이어 보강용 고 탄소강 미세 강선의 굽힘 피로 성질에 미치는 미세 조직의 영향 (The Effects of Microstrucutral Parameters on Bending Fatigue Properties of Heavily Drawn Pearlitic Steel Filaments used for Automotive Tires)

  • 양요셉;임승호;반덕영;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.193-197
    • /
    • 2005
  • Influences of microstructure on high-cycle fatigue (HCF) limit of high carbon $(>0.7wt.\;\%)$ steel filaments used for tires have been investigated. A series of the fatigue tests was carried out depending on carbon content by using Hunter-type tester at a frequency of 60 Hz at a tension/compression stress of 900 to 1500 MPa. Microstructural changes of the filaments were identified in the lateral direction by using transmission electron microscopy (TEM). It was found that the mechanical properties, such as fatigue limit and tensile strength, were improved with increasing carbon content, which was mainly attributed to decreased lamellar spacing and cementite thickness. However, the fatigue ratio, which is defined as the ratio of the fatigue limit to the tensile strength, was reduced in a higher carbon range of 0.8 to $0.9\;wt.\%$, while the fatigue ratio was nearly constant in a lower carbon range of 0.7 to $0.8\;wt.\%$. Overall mechanical properties of the filaments, depending on carbon content, have been discussed in terms of the microstructural parameter change of lamellar spacing and cementite thickness. In addition, the variation of cementite morphology on the fatigue crack propagation of high carbon $(0.9wt.\;\%)$ filaments will be discussed.

  • PDF