• 제목/요약/키워드: Crack Healing

검색결과 123건 처리시간 0.018초

졸-겔 공정으로 합성된 코디어라이트를 이용하여 알루미나의 표면개질 (Surface Modification of Alumina Ceramic with Mg2Al4Si5O18 Glass by a Sol-Gel Process)

  • 최필규;추민철;배동식
    • 한국재료학회지
    • /
    • 제24권1호
    • /
    • pp.48-52
    • /
    • 2014
  • The Mg-enriched magnesium aluminum silicate (MAS) glass is known for its higher mechanical strength and chemical resistance. Among such glasses, cordierite ($Mg_2Al_4Si_5O_{18}$) is well known to have a low thermal expansion and low melting point. Polycrystalline engineering ceramics such as alumina can be strengthened by a surface modification with low thermal expansion materials. The present study involves the synthesis of cordierite by a sol-gel process and investigates the effect of glass penetration on the surface of alumina. The cordierite powders were prepared from $Al(OC_3H_7)_3$, $Mg(OC_2H_5)_2$ and tetraethyl orthosilicate by hydrolysis and condensation reaction. The cordierite powders were characterized by X-ray diffraction (XRD, Rigaku), scanning electron microscope (SEM, JEOL: JSM-5610), energy dispersive spectroscopy (EDS, JEOL: JSM-5610), and universal testing machine (UTM, INSTRON). The X-ray diffraction patterns showed that the synthesized particles were ${\mu}$-cordierite calcined at $1100^{\circ}C$ for 1 h. The shape of synthesized cordierite was changed from ${\mu}$-cordierite to ${\alpha}$-cordierite with increasing calcination temperature. Synthesized cordierite was used for surface modification of alumina. Cordierite powders penetrated deeply into the alumina sample along grain boundaries with increasing temperature. The results of surface modification tests showed that the strength of the prepared alumina sample increased after surface modification. The strength of a surface modified with synthesized cordierite increased the most, to about 134.6MPa.

POFA 콘크리트의 재료특성 및 부식 저항성 평가로의 적용 (Material Characteristic of POFA Concrete and Its Application to Corrosion Resistance Evaluation)

  • 이창홍;송하원;안기용;모하마드 압델 이스마엘
    • 콘크리트학회논문집
    • /
    • 제21권5호
    • /
    • pp.565-572
    • /
    • 2009
  • 이 연구에서는 전기화학적 기법을 사용하여 혼합콘크리트의 일종인 palm oil fuel ash(POFA) 콘크리트의 부식저항성을 평가하였다. POFA는 야자수로부터 야자유를 정제하고 난후 야자수 재로 추출되어진 산업 재생 폐기물을 일컫는다. POFA 콘크리트의 기본 물성 특성분석을 위해서 초기재령에서의 POFA 콘크리트의 압축강도, 슬럼프, 중량감소율, 블리딩 및 팽창비 특성 분석실험을 수행하였다. 한편, 내구성 특성분석을 위해서 염소이온침투시험 및 중성화 침투시험도 수행하였다. 마지막으로 전기화학적 균열치유기법을 사용하여, 가압전압 특성분석, 갈바닉 전류특성분석 및 선형분극저항 평가 등의 부식저항성 평가를 실시하였다. 실험 결과로부터, 장기재령의 강도, 블리딩, 슬럼프 특성, 팽창비, 염소이온 확산성, 탄산화 저항성 및 부식저항성의 향상 효과가 활성화 되어진 POFA 콘크리트의 포졸란 반응에 기인하여 이루어지고 있음을 확인하였다. 따라서 POFA 콘크리트는 그린-재생 자원으로서 시멘트계 대체 결합재로서의 이용가능성이 있음을 확인할 수 있었다.

지르코니아/알루미나 복합 지대주의 생물학적 안정성에 관한 연구 (Biological stability of Zirconia/Alumina composite ceramic Implant abutment)

  • 배규현;한증석;김태일;설양조;이용무;구영;조기영;정종평;한수부;류인철
    • Journal of Periodontal and Implant Science
    • /
    • 제36권2호
    • /
    • pp.555-565
    • /
    • 2006
  • The purpose of the present study is to evaluate the biological stability of the zirconia/alumina composite abutment by histologic and radiographic examination in clinical cases. 17 partially edentulous patients (5 men and 12 women, mean age 47) were treated with 37 implants. The implants were placed following the standard two-stage protocol. After a healing period of 3 to 6 months, zirconia/alumina composite abutments were connected. All radiographs were taken using paralleling technique with individually fabricated impression bite block, following insertion of the prosthesis and at the 3-, 6-, 12 month re-examinations. After processing the obtained images, the osseous level was calculated using the digital image in the mesial and distal aspect in each implant. An ANOVA and t-test were used to test for difference between the baseline and 3-, 6-, 12 months re-examinations, and for difference between maxilla and mandible. Differences at P <0.05 were considered statistically significant. For histologic examination, sample was obtained from the palatal gingiva which implant functioned for 12 months. Sections were examined under a light microscope under various magnifications. Clinically, no abutment fracture or crack as well as periimplantitis was observed during the period of study. The mean bone level reduction(${\pm}standard$ deviation) was 0.34 rom(${\pm}\;0.26$) at 3-months, 0.4 2mm(${\pm}\;0.30$) at 6-months, 0.62 mm(${\pm}\;0.28$) at 12-months respectively. No statistically significant difference was found between baseline and 3-, 6-, 12-months re-examinations (p > 0.05). The mean bone level reduction in maxilla was 0.33(${\pm}0.25$) at 3-months, 0.36(${\pm}0.33$) at 6-months, 0.56(${\pm}0.26$) at 12-months. And the mean bone level reduction in mandible was 0.35(${\pm}0.27$) at 3-months, 0,49(${\pm}0.27$) at 6-months, 0.68(${\pm}0.30$) at 12-months. No statistical difference in bone level reduction between implants placed in the maxilla and mandible. Histologically, the height of the junctional epithelium was about 2.09 mm. And the width was about 0.51 mm. Scattered fibroblasts and inflammatory cells, and dense collagen network with few vascular structures characterized the portion of connective tissue. The inflammatory cell infiltration was observed just beneath the apical end of junctional epithelium and the area of direct in contact with zirconia/alumina abutment. These results suggest the zirconia/alumina composite abutment can be used in variable intraoral condition, in posterior segment as well as anterior segment without adverse effects.