• 제목/요약/키워드: Crack Growth Retardation Behavior

검색결과 44건 처리시간 0.021초

변동하중하에서 고강도 알루미늄 합금의 피로수명 예측 (Fatigue Life Prediction for High Strength AI-alloy under Variable Amplitude Loading)

  • 심동석;김강범;김정규
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.2074-2082
    • /
    • 2000
  • In this study, to investigate and to predict the crack growth behavior under variable amplitude loading, crack growth tests are conducted on 7075-T6 aluminum alloy. The loading wave forms are generated by normal random number generator. All wave forms have same average and RMS(root mean square) value, but different standard deviation, which is to vary the maximum load in each wave. The modified Forman's equation is used as crack growth equation. Using the retardation coefficient D defined in previous study, the load interaction effect is considered. The variability in crack growth process is described by the random variable Z which was obtained from crack growth tests under constant amplitude loading in previous work. From these, a statistical model is developed. The curves predicted by the proposed model well describe the crack growth behavior under variable amplitude loading and agree with experimental data. In addition, this model well predicts the variability in crack growth process under variable amplitude loading.

비행하중하에서 2124-T851 알루미늄합금의 피로균열진전 예측 (Prediction of Crack Growth in 2124-7851 Al-Alloy Under Flight-Simulation Loading)

  • 심동석;황돈영;김정규
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1487-1494
    • /
    • 2002
  • In this study, to propose the prediction method of the crack growth under flight-simulation loading, crack growth tests are conducted on 2124-7851 aluminum alloy specimens. The prediction of crack growth under flight-simulation loading is performed by the stochastic crack growth model which was developed in previous study. First of all, to reduce the complex load history into a number of constant amplitude events, rainflow counting is applied to the flight-simulation loading wave. The crack growth, then, is predicted by the stochastic crack growth model that can describe the load interaction effect as well as the variability in crack growth process. The material constants required in this model are obtained from crack growth tests under constant amplitude loading and single tensile overload. The curves predicted by the proposed model well describe the crack growth behavior under flight-simulation loading and agree with experimental data. In addition, this model well predicts the variability of fatigue lives.

단일과대하중에 의한 피로균열전파의 지연거동 (Retardation of Fatigue Crack Propagation by Single Overloading)

  • 김상철;함경춘;강동명
    • 한국안전학회지
    • /
    • 제7권1호
    • /
    • pp.20-29
    • /
    • 1992
  • Effects of strain hardening exponents on the retardation behavior of fatigue crack propagation are experimentally investigated. The retardation of fatigue crack propagation seems to be induced by the crack closure at crack tip. The phenomenon of crack closure becomes remarkable with the increment of strain hardening exponent and magnitude of percent peak load. The ratio of crack growth increment(a$\_$d//w$\_$d/) is influenced by a single overloading (a$\_$d/) and estimated plastic zone size (W$\_$d/=2r$\_$y/) is increased according with the increasing of strain ha.dening exponents. The number of retarded crack growth cycles were (N$\_$d/) decreased as the baseline stress intensity factor .ange( K$\_$b/) was increased. Within the limitation of these experimental results obtained under the single overload, an empirical relation between crack retardation ratio (Nd/N*), strain hardening exponent (n) and percent peak load (%PL) has been proposed as; Nd/N*= exp [PL $.$ PL$.$A(n)+B(n) ] where, A(n)=${\alpha}$n+${\beta}$, B(n)=${\gamma}$n+$\delta$, PL=%PL/100 and ${\alpha}$=0.78, ${\beta}$=0.54, ${\gamma}$=0.58 and $\delta$=-0.01, It is interesting to note that all these constants are identical for materials such as aluminum(A3203), steel(S4SC), steel(SS41) and stainless steel(SUS316) used in this experimental study.

  • PDF

CFRP로 보강한 하이브리드 복합재료의 비파괴검사법을 이용한 피로균열 지연의 연구 (A Study on Fatigue Crack Retardation Using NDT Test in a Hybrid Composite Material Reinforced with a CFRP)

  • 윤한기;박원조;허정원
    • Composites Research
    • /
    • 제12권3호
    • /
    • pp.1-7
    • /
    • 1999
  • Al2024-T3 판재에 카본/에폭시(carbon/epoxy) 라미네이트를 섬유배열 방향 $0^{\circ}$/$90^{\circ}$$\pm$$45^{\circ}$로 2 Plies 보강하여 CPAL(Carbon Patched ALuminum alloy)재를 제작하고, 응력비 R=0.2, 0.5에서 피로균열전파 실험을 실시하였다. X-Ray와 초음파 C-Scan 장비를 이용하여 A/2024-T3 판재의 균열과 CFRP 라미네이트 박리 거동을 조사하여 피로균열 지연 거동과 지연기구(mechanism)를 연구하였다. A/2024-T3 시험편에 비해서 CPAL 시험편은 피로균열전파속도가 현저하게 지연되었으며, 지연 정도는 $0^{\circ}$/$90^{\circ}$ CPAL이 $\pm$$45^{\circ}$ CPAL 시험편보다 크고, 응력비 R=0.2에서 응력비 R=0.5보다 크게 나타났다. CPAL 시험편의 피로균열 지연 효과는 균열후방의 박리 및 비박리 CFRP 라미네이트가 A/2024-T3 판재의 균열열림(COD)을 감소시키는 균열브리징미케니즘(crack bridging medhanism) 때문에 발생함을 확인하였다.

  • PDF

6063-T5 알미늄 합금의 단일과대하중에 의한 부식피로균열진전거동에 관한 연구 (A Study on Corrosion Fatigue Crack Propagation Behaviors due to a Single Overload in 6063-T5 Aluminum Alloy)

  • 강동명;우창기;이하성
    • 한국안전학회지
    • /
    • 제12권3호
    • /
    • pp.38-44
    • /
    • 1997
  • 6063-T5 alloys are tested in laboratory air, water and 3% NaCl solution to investigate the effects of corrosive environment on the retardation behavior through single overload fatigue test. Also, the fatigue crack propagation and the crack closure behavior are studied. The results obtained in this experimental study are summarized as follows. 1) Behaviors of fatigue crack growth retardation are observed in water and 3% NaCl solution as they do in air. The number of delay cycles and the size of affected region by single overload decrease greatly in water and 3% NaCl compared with those in air. 2) In fractographic results, the overload marking by single overload appear remarkably in air, but indistinctly in water and 3% NaCl solution. 3) The effect of crack closure on crack propagation is most remarkable in the beginning of crack propagation. With crack propagation, the crack closure level and its effect decrease greatly.

  • PDF

예비압입에 의한 알루미늄 2024-T3 알클래드 합금의 균열성장 지연거동 (Crack Growth Retardation Behavior in Aluminium 2024-T3 Alclad Alloy by Pre-Indentation)

  • 황정선;조환기
    • 한국군사과학기술학회지
    • /
    • 제4권2호
    • /
    • pp.42-51
    • /
    • 2001
  • The effects of pre-indentation technique are presented for A12024-T3 Alclad alloy using as skin material for aircraft fuselage and wing. Indentations were applied to specimens to be placed on the presumed path of fatigue crack growth before fatigue tests. Tension-tension fatigue tests were conducted on the edge cracked specimens in the L-T orientation. Test results were analyzed to investigate the effectiveness of pre-indentation with the variation of specimen's thickness, position of indentation and applied maximum stress. Fatigue crack retardation by pre-indentation is well recognized in the various conditions.

  • PDF

랜덤하중에서의 균열전파속도 추정법에 관한 연구 (A Prediction of Crack Propagation Rate under Random Loading)

  • 표동근;안태환
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.115-123
    • /
    • 1994
  • Under variable amplitude loading conditions, retardation or accelerated condition of fatigue crack growth occurs with every cycle, Because fatigue crack growth behavior varied depend on load time history. The modeling of stress amplitude with storm loading acted to ships and offshore structures applied this paper. The crack closure behavior examine by recording the variation in load-strain relationship. By taking process mentioned above, fatigue crack growth rate, crack length, stress intensity factor, and crack closure stress intensity factor were obtained from the stress cycles of each type of storm ; A(6m), B(7m), C(8m), D(9m), E(11m) and F(15m) which was wave height. It showed that the good agreement with between the experiment results and simulation of storm loads. So this estimated method of crack propagtion rate gives a good criterion for the safe design of vessels and marine structure.

  • PDF

평면 굽힘 피로하중에 의한 알루미늄 합금재의 모서리 균열 전파거동에 관한 연구 (An investigation of the behavior in the corner crack propagation of Al-Alloy by the plane bending fatigue)

  • 김영식;김영종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.49-63
    • /
    • 1984
  • The 5086-H116 Al-Alloy plate specimens having an edge through-thickness notch were investigated to find out the characteristics of the corner crack propagation by the plane bending fatigue. The experiments were also carried out in order to clarify the change of the corner crack propagation behaviour due to the various materials and their thicknesses. In addition, the retardation effect of overload on the corner crack propagation was quantatively studied. Main results obtained are as follows; 1. In the case of estimating the crack propagation rate of the corner crack, it is more reasonable to consider the growth rate of fracture surface area than that of crack length. 2. The shape of the corner crack growing in the plane plate under the bending fatigue can be estimated. 3. The crack propagation rate increases with the increasing of the thickness and the decreasing of the Young's modulus of materials. 4. Regardless of a thickness and kind of materials of specimen, the characteristics of the corner crack propagation can be concluded. 5. The retardation effect of overload is distinct in the corner crack propagation.

  • PDF

전단하중 하의 피로균열 전파거동의 특징 (The Characteristics of Fatigue Crack Propagation Behavior in Shear Load)

  • 이정무;송삼홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.302-307
    • /
    • 2004
  • This paper reviewed characteristics of fatigue crack behavior observed by changing various shapes of initial crack and magnitudes of loading in compact tension shear(CTS) specimen subjected to shear loading. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Meanwhile, the secondary fatigue crack in the low-loading condition which was created in the notch root due to friction on the pre-crack face grew to a main crack. Influenced by the mode II loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. Propagation path of fatigue crack under the shear loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

Analysis on Short Crack Growth Rate after Single Overload under Cyclic Bending Moment

  • Song, Sam-Hong;Lee, Kyeong-Ro;Kim, Amkee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.19-26
    • /
    • 2001
  • In order to investigate the effect of single tensile overload on the short crack growth behavior under the out-of-plane cyclic bending moment, crack opening stresses were continuously measured by an elastic compliance method using strain gages. The characteristics of short crack growth after the single tensile overload are analyzed by the effective stress range ratio. Futhermore, the investigation was carried out with respect to various fatigue crack growth behaviors such as the plastic zone size effect on crack retardation, the retarded crack length and the number of cycles.

  • PDF