• 제목/요약/키워드: Crack Growth Rate

검색결과 589건 처리시간 0.031초

슈퍼 듀플렉스 스테인레스강의 미세조직 및 기계적 특성에 미치는 열처리 후 냉각속도의 영향 (Effects of the Cooling Rate After Annealing Treatment on the Microstructure and the Mechanical Properties of Super-Duplex Stainless Steel)

  • 권기현;나영상;유위도;이종훈;박용호
    • 대한금속재료학회지
    • /
    • 제50권10호
    • /
    • pp.735-743
    • /
    • 2012
  • The aim of this study was to analyze the effect of the cooling rate after heat treatment on the microstructure and mechanical properties of 2507 duplex stainless steels. Heat treatment was carried out at $1050^{\circ}C$ for 1 hr, followed by controlled cooling. The cooling rates were $175.6{\times}10^{-3}^{\circ}C/s$, $47.8{\times}10^{-3}^{\circ}C/s$, $33.3{\times}10^{-3}^{\circ}C/s$, $16.7{\times}10^{-3}^{\circ}C/s$, $11.7{\times}10^{-3}^{\circ}C/s$, $5.8{\times}10^{-3}^{\circ}C/s$ and $2.8{\times}10^{-3}^{\circ}C/s$, which resulted in variations of the microstructure, such as the fractional change of the ferrite phase and sigma phase formation. Fatigue, hardness, impact and tensile tests were performed on the specimens with different cooling rates. The precipitation of the ${\sigma}$ phase caused a hardness increase and a sharp decrease of toughness and tensile elongation. The fatigue limit of the sample with a cooling rate of $5.8{\times}10^{-3}^{\circ}C/s$ was 26 MPa higher than that of the sample with a cooling rate of $175.6{\times}10^{-3}^{\circ}C/s$. Our observations of the fracture surface confirmed that the higher fatigue resistance of the specimen with a cooling rate of $5.8{\times}10^{-3}^{\circ}C/s$ was caused by the delay of the fatigue crack growth, in addition to higher yield strength.

이온질화 처리한 SM45C의 피로파괴거동에 관한 실험적 연구 (An Experimental Study on the Fatigue Fracture Behavior of Ion-Nitrided SM45C)

  • 김상철;우창기;강동명
    • 대한조선학회지
    • /
    • 제27권2호
    • /
    • pp.47-54
    • /
    • 1990
  • 본 연구에서는 이온질화처리한 SM45C강의 피로파괴거동, 피로크랙진전거동 및 부식피로파괴거동에 관한 $N_2:H_2$가스조정비와 이온질화처리시간에 대한 효과를 조사하였다. 실험에 사용된 모든 종류의 시험편의 피로한도와 부식피로강도는 $N_2$가스와 처리시간에 비례하여 증가하였다. 무처리 시험편에 비해 이온질화처리시험편은 피로한도 및 부식피로강도가 $10^7$싸이클의 공기중에서 $24{\sim}29%$, $10^6$싸이클의 3% NaCl 수용액 중에서는 $32{\sim}48%$ 증가하였다. 반복압축-인장하중을 받는 SM45C강은 이온질화처리시험편이 무처리시험편에 비해 피로한도 및 부식피로강도가 $10^6$싸이클의 공기중에서 $24{\sim}29%$증가하였고, 3% NaCl 수용액중과 수도물중에서 $32{\sim}48%$의 증가를 보였다. 이온질화처리한 SM45C강은 무처리시험편에 비해 낮은범위의 ${\Delta}K$ 영역에서는 균열진전속도가 느리고, 높은 ${\Delta}K$ 영역에서는 빨라졌다.

  • PDF

Oxide perovskite crystals type ABCO4:application and growth

  • Pajaczkowska, A.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.258-292
    • /
    • 1996
  • In the last year great interest appears to YBCO thin films preparation on different substrate materials. Preparation of epitaxial film is a very difficult problem. There are many requirements to substrate materials that must be fullfilled. Main problems are lattice mismatch (misfit) and similarity of structure. From paper [1] or follows that difference in interatomic distances and angles of substrate and film is mire important problem than similarity of structure. In this work we present interatomic distances and angle relations between substrate materials belonging to ABCO4 group (where A-Sr or Ca, B-rare earth element, C-Al or Ga) of different orientations and YBCO thin films. There are many materials used as substrates for HTsC thin films. ABCO4 group of compounds is characterized by small dielectric constants (it is necessary for microwave applications of HTsC films), absence of twins and small misfit [2]. There most interesting compounds CaNdAlO4, SrLaAlO4 and SrLaGaO4 were investigated. All these compounds are of pseudo-perovskite structure with space group 14/mmm. This structure is very similar to structure of YBCO. SLG substrate has the lowest misfit (0.3%) and dielectric constant. For preparation of then films of substrates of this group of compound plane of <100> orientation are mainly used. Good quality films of <001> orientations are obtained [3]. In this case not only a-a misfit play role, but c-3b misfit is very important too. Sometimes, for preparation of thin films substrates of <001> and <110> orientations were manufactured [3]. Different misfits for different YBCO faces have been analyzed. It has been found that the mismatching factor for (100) face is very similar to that for (001) face so there is possibility of preparation of thin films on both orientations. SrLaAlO4(SLA) and SrLaGaO4(SLG) crystals of general formula ABCO4 have been grown by the Czochralski method. The quality of SLA and SLG crystals strongly depends on axial gradient of temperature and growth and rotation rates. High quality crystals were obtained at axial gradient of temperature near crystal-melt interface lower than 50℃/cm, growth rate 1-3 mm/h and the rotation rate changing from 10-20pm[4]. Strong anisotropy in morphology of SLA and SLG single crystals grown by the Czochralski method is clearly visible. On the basics of our considerations for ABCO4 type of the tetragonal crystals there can appear {001}, {101}, and {110} faces for ionic type model [5]. Morphology of these crystals depend on ionic-covalent character of bonding and crystal growth parameters. Point defects are observed in crystals and they are reflected in color changes (colorless, yellow, green). Point defects are detected in directions perpendicular to oxide planes and are connected with instability of oxygen position in lattice. To investigate facets formations crystals were doped with Cr3+, Er3+, Pr3+, Ba2+. Chromium greater size ion which is substituted for Al3+ clearly induces faceting. There appear easy {110} faces and SLA crystals crack even then the amount of Cr is below 0.3at.% SLG single crystals are not so sensitive to the content of chromium ions. It was also found that if {110} face appears at the beginning of growth process the crystal changes its color on the plane {110} but it happens only on the shoulder part. The projection of {110} face has a great amount of oxygen positions which can be easy defected. Pure and doped SLA and SLG crystals measured by EPR in the<110> direction show more intensive lines than in other directions which allows to suggest that the amount of oxygen defects on the {110} plane is higher. In order to find the origin of colors and their relation with the crystal stability, a set of SLA and SLG crystals were investigated using optical spectroscopy. The colored samples exhibit an absorption band stretching from the UV absorption edge of the crystal, from about 240 nm to about 550 m. In the case of colorless sample, the absorption spectrum consists of a relatively weak band in the UV region. The spectral position and intensities of absorption bands of SLA are typical for imperfection similar to color centers which may be created in most of oxide crystals by UV and X-radiation. It is pointed out that crystal growth process of polycomponent oxide crystals by Czochralski method depends on the preparation of melt and its stoichiometry, orientation of seed, gradient of temperature at crystal-melt interface, parameters of growth (rotation and pulling rate) and control of red-ox atmosphere during seeding and growth (rotation and pulling rate) and control of red-ox atmosphere during seeding and growth. Growth parameters have an influence on the morphology of crystal-melt interface, type and concentration of defects.

  • PDF

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • 제3권5호
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

수치해석을 이용한 전동차용 IGBT 모듈의 피로 수명 예측 (Numerical Fatigue Life Prediction of IGBT Module for Electronic Locomotive)

  • 권오영;장영문;이영호;좌성훈
    • 마이크로전자및패키징학회지
    • /
    • 제24권1호
    • /
    • pp.103-111
    • /
    • 2017
  • 본 연구에서는 전동차의 전력 변환 장치로 많이 사용되고 있는 고전압 대전류용(3,300 V/1200 A급) insulated gate bipolar transistor(IGBT) 모듈에 대하여 열 사이클 조건하에서의 열-기계적 응력해석 및 피로수명해석을 수행하였다. 특히 최근 고전압 IGBT용으로 개발되고 있는 구리(copper) 와이어, 리본(ribbon) 와이어를 사용하였을 경우의 응력 및 피로수명을 기존의 알루미늄 와이어와 비교하여 분석하였다. 알루미늄 와이어 보다는 구리 와이어에 응력이 3배 이상 많이 발생하였다. 리본 와이어의 경우 원형 와이어 보다 응력이 더 크게 발생하며, 구리 리본 와이어의 응력이 제일 높았다. 칩과 direct bond copper(DBC)를 접합하고 있는 칩 솔더부의 피로해석을 수행한 결과, 솔더의 크랙은 주로 솔더의 모서리에서 발생하였다. 원형 와이어를 사용할 경우 솔더의 크랙은 약 35,000 사이클에서 발생하기 시작하였으며, 알루미늄 와이어 보다는 구리 와이어에서의 크랙의 발생 면적이 더 컸다. 반면 리본 와이어를 사용하였을 경우 크랙의 면적은 원형 와이어를 사용하였을 경우보다 적음을 알 수 있다. DBC와 베이스 플레이트 사이에 존재하는 솔더의 경우 크랙의 성장 속도는 와이어의 재질이나 형태에 관계없이 비슷하였다. 그러나 칩 솔더에 비하여 크랙의 발생이 일찍 시작하며, 40,000 사이클이 되면 전체 솔더의 반 이상이 파괴됨을 알 수 있었다. 따라서 칩 솔더 보다는 DBC와 베이스 플레이트 사이에 존재하는 솔더의 신뢰성이 더 큰 문제가 될 것으로 판단된다.

Cu-Sn 삽입금속을 이용한 DP강의 아크 브레이징 접합부의 미세조직과 인장특성 (Microstructure and Tensile Strength Property of Arc Brazed DP steel using Cu-Sn Insert Metal)

  • 조욱제;조영호;윤중길;강정윤
    • Journal of Welding and Joining
    • /
    • 제31권1호
    • /
    • pp.58-64
    • /
    • 2013
  • The following results were obtained, microstructures and tensile properties in arc brazed joints of DP(dual phase) steel using Cu-5.3wt%Sn insert metal was investigated as function of brazing current. 1) The Fusion Zone was composed of ${\alpha}Fe+{\gamma}Cu$ and Cu23Sn2. The reason for the formation of these solid solutions. Despite, Fe & Cu were impossible to solid solution at room temperature. It's melting & reaction to something of insert metal & Base Metal (DP Steel) by Arc. Brazing Process has faster cooling rate then Cast Process, Supersaturated solid solution at room temperature. 2) The increase Hardness of Fusion Zone was directly proportional to the rise of welding current. Because, ${\alpha}Fe+{\gamma}Cu$ phase (higher hardness than the Cu23Sn2.(104.1Hv < 271.9Hv)) Volume fraction was Growth, due to increasing the amount of base metal melting by High current. 3) The results of tensile shear test by Brazing, All specimens happen to fracture in Fusion Zone. On the other hand, when Brazing Current increasing tend to rise tensile load. but it was very small, about 26-30% of the base metal. 4) The result of fracture analysis, The crack initiate at Triple Point for meet to Upper B.M/Under B.M/Fusion Zone. This Crack propagated to Fusion zone. So ruptured by tensile strength. The Reason to in the fusion zone fracture, Fusion zone by Brazing of hardness (strength) was very lower then the base metal (DP steel). In addition the Fusion Zone's thickness in triple point was thin than the base metal's thickness in triple point.

황산 용액에서 Al6061 합금의 아노다이징 피막 형성거동 (Formation Behavior of Anodic Oxide Films on Al 6061 Alloy in Sulfuric Acid Solution)

  • 문성모;정기훈;임수근
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.393-399
    • /
    • 2018
  • Formation behavior of aluminum anodic oxide (AAO) films on Al6061 alloy was studied in view of thickness, morphology and defects in the anodic films in 20 vol.% sulfuric acid solution at a constant current density of $40mA/cm^2$, using voltage-time curve, observation of anodized specimen colors and surface and cross-sectional morphologies of anodic films with anodization time. With increasing anodizing time, voltage for film formation increased exponentially after about 12 min and its increasing rate decreased after 25 min, followed by a rapid decrease of the voltage after about 28 min. Surface color of anodized specimen became darker with increasing anodizing time up to about 20 min, while it appeared to be brighter with increasing anodizing time after 20 min. The darkened and brightened surfaces with anodizing time are attributed to an increase in thickness of porous anodic oxide film and a chemical damage of the films due to heat generated by increased resistance of the film, respectively. Cross-sectional observation of AAO films revealed the formation of defects of crack shape at the metal/oxide interface after 15 min which prevents the growth of AAO films. Width and length of the crack-like defect increased with anodizing time up to 25 min of anodizing, and finally the outer part of AAO films was partly dissolved or detached after 30 min of anodizing, resulting in non-uniform surface structures of the AAO films.

$\mu$-PD법에 의한 Er : Mg : LiNbO$_3$fiber 결정 성장 및 형광특성 (Growth and photoluminescence properties of Er : Mg : LiNbO$_3$single crystal fibers by $\mu$-PD method)

  • 양우석;윤대호
    • 한국결정성장학회지
    • /
    • 제10권6호
    • /
    • pp.389-393
    • /
    • 2000
  • 본 연구에서는 $\mu$-PD법으로 Er : Mg : $LiNbO_3$화이버 결정을 MgO의 첨가량을 달리하여 성장시켰으며, 첨가물 농도에 따른 성장조건과 PL 특성에 관해 조사하였다. 또한,성장한 결정의 투과 스펙트럼으로부터 Er : Mg : $LiNbO^3$에서 $Er^{3+}$ 의 에너지 준위구조를 계산하였다. Crack과 bubble등의 결함이 없는 결정은 after-beater를 조정하여 0.5 mm/min 이하의 성장속도에서 얻을 수 있었다. MgO의 농도에 따른 PL강도는 0.6 mol% $Er_2O_3$와 3 mol% MgO가 첨가된 Er : Mg : $LiNbO_3$결정에서 가장 강한 형광강도가 관측되었다. 또한, 에너지 준위 $^4S_{3/2}$에서 기저준위로 방출되는 빛이 가장 강했으며 1530 nm의 형광은 비방출천이 및 형광방출 등의 원인에 의한 $^4I_{13/2}$ 준위에서의 여기전자 감소가 형광강도 감소의 원인임을 알 수 있었다.

  • PDF

플라즈마 스프레이 방법으로 코팅 된 $Al_2O_3$막의 구조적 특성 (Structural characterization of $Al_2O_3$ layer coated with plasma sprayed method)

  • 김좌연;유재근;설용태
    • 한국결정성장학회지
    • /
    • 제16권3호
    • /
    • pp.116-120
    • /
    • 2006
  • 반도체 드라이 에처 시스템의 웨이퍼 정전기 척에 적용하기 위해 플라즈마 스프레이 방법으로 Al-60 계열 기판에 코팅한 $Al_2O_3$ 코팅 막의 특성을 조사하였다. 시편 뒷면에 냉각봉이 장착되었을 때와 없을 때, 용사거리와 분말공급량을 변형하면서 $Al_2O_3$ 막 코팅을 하여 시편을 제작 하였다. 시편 뒷면에 냉각봉이 없을 때는 크랙과 기공이 많이 발생하였다. 시편 뒷면에 냉각봉을 장착하고 분말공급량을 15g/min로 한 경우에 용사거리 60, 70, 80mm에 따른 $Al_2O_3$ 코팅에서는 크랙과 기공은 거의 찾아볼 수 없었다. 용사거리 변화에 따른 $Al_2O_3$ 막 코팅의 표면형태 변화는 없었다. 같은 공정조건에서 분말 공급량을 20g/min로 한 경우에도 크랙은 볼 수 없었으나 약간의 기공이 생겼고, 분말공급량을15g/min로 하였을 때 보다 작은 입자들이 많이 증착되었다. 시편 뒷면에 냉각봉이 없을 때가 시편 뒷면에 냉각봉이 장착된 경우에 비하여 증착 속도가 빨랐다.

FEM과 Striation을 이용한 로커 암 축의 파손응력 추정 (Prediction of Failure Stress of Rocker Arm Shaft using FEM and Striation)

  • 이수진;이동우;홍순혁;조석수;주원식
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.84-90
    • /
    • 2007
  • As a result of vehicle maintenance of rocker arm shaft for 4-cylinder SOHC engine, failure stress analysis of rocker arm shaft is needed. Because more than 30% of vehicles investigated have been fractured. Failure stress analysis is classified into an naked eyes, microscope, striation and X-ray fractography etc. Failure stress analysis by using striation is already established technology as means for seeking cause of fracture. But, although it is well known that striation spacing corresponds to the crack growth rate da/dN, it is not possible to determine ${\sigma}_{max}\;and\;{\sigma}_{min}$ under service loading only from striation spacing. This is because the value of striation spacing is influenced not only by ${\Delta}K$ but also by the stress ratio R. In the present paper, we determine the stress ratio using orthogonal array and ANOVA, and propose a prediction method of failure stress which is combined with FEM and striation.