• Title/Summary/Keyword: Crack Closure Method

Search Result 72, Processing Time 0.023 seconds

The Effect of Stress Ratio on the Surface Crack Growth Behavior in 7075-T651 Aluminum Alloy (7075-T651 Al合金의 表面균열進展에 미치는 應力比의 影響)

  • 박영조;김정규;신용승;김성민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.62-69
    • /
    • 1986
  • Fatigue surface crack growth was studied in 7075-T651 aluminum alloy plates subjected largely to bending loads. The surface crack length and its depth were measurement by the unloading elastic compliance method. The surface crack growth rate dc/dN, on the surface and da/dN, in the depth direction were obtained by the secant method. The stress intensity factor range .DELTA.K was computed by means of Newman and Raju equation. The aspect ratio a/c was presented in form of a/c=0.815-0.853(a/T). The effect of the stress ratio on the stable surface crack growth rates under increasing .DELTA.T is larger in lower .DELTA.K, while the relation between dc/dN, da/dN and the effective stress intensity factor range .DELTA.K$_{eff}$ is weakly dependent on the stress ratio.o.

Crack Growth Behavior of Tensile Overload for Small Load Amplitude at High-Low Block Stress Ratio (고-저블럭 응력비에서 하중진폭이 작은 인장과대 하중의 균열성장 거동)

  • 김엽래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.120-126
    • /
    • 1997
  • This paper examines the crack growth behavior of 7075-T651 aluminum alloy under high-low block loading condition. The cantilever beam type specimen with a chevron notch is used in this study. The crack growth and closure are investgated by compliance method. The applied initial stress ratios are R=-0.5, R=0.0 and R=0.25 Crack length($\alpha$), effective stress intensity factor range(ΔKeff), ratio of effective stress intensity factor range(U) and crack growth rate(d$\alpha$/dN) etc. are inspected fracture mechanics estimate.

  • PDF

A Prediction of Initial Fatigue Crack Propagation Life in a notched Component Taking Elasto-Plastic Behavior (탄소성 응력집중부에서의 초기피로균열전파수명의 예측)

  • Cho, Sang-Myung;Kohsuke Horikawa
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.61-70
    • /
    • 1988
  • In order to consider the concept of the fitness for purpose'in fatigue design of offshore structure, fracture mechanics is applied to evaluate initial or weld defects. Generally, linear elastic fracture mechanics has been applied to tstimate initial fatigue crack propagation rate as well as long fatigue crack propagation rate. But, initial fatigue crack propagation rate in elasto-plastic notch field may not be characterized by application of stress intensity factor range .DELTA. K, because plastic effect due to stress concentration of notch may contribute to initial crack propagation. Therefore, to introduce the plastic effect into fatigue crack driving force, in this studty, the evaluating method of J-integral range .DELTA. J, was developed by willson was modified for application to notch field. In calculation of .DELTA. J obtained from the modified J-integral, stress gradient and crack closure behavior in the notch field were considered. The initial crack propagation rates in the notch fields of mild steels and high tensile strength steels were correlated to .DELTA. J. As the result, it was cleared that the present .DELTA. J is applicable to charachterize the fatigue crack propagation rates in both the elastic and elasto-plastic notch fields.

  • PDF

An Experimental on the Evalution of Fatigue Crack Propagation of Carbon Steel (탄소강의 피로균열 진전거동 평가에 관한 실험적 연구)

  • 김희송;안병욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.938-946
    • /
    • 1989
  • Using the CT specimen of carbon steel(SM45C), we estimated the fatigue crack propagation behavior in stable crack propagation range. Furthermore the fatigue crack propagation rate, Acoustic Emission(AE) count rate, and fractography characteristics were also compared among others. The following results were confirmed by experimental observation. Near-threshold stress intensity factor range(.DELTA. $K_{th}$) is influenced by stress ratio but not at the upper limit of stable crack propagation range. As stress intensity factor range(.DELTA.K) and(or) stress amplitude increase (s), both crack propagation rate(da/dN) and AE count rate(dn/dN) increase. Effective stress intensity factor range(.DELTA. $K_{off}$) determined from the crack closure point measurement by AE method is useful for the evaluation of fatigue crack propagation rate. Fractography in stable crack propagation range showed striation, and agreed with the crack propagation rate obtained either by experiment of by the results of microscopic measurements.s.

Fatigue reliability analysis of steel bridge welding member by fracture mechanics method

  • Park, Yeon-Soo;Han, Suk-Yeol;Suh, Byoung-Chul
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.347-359
    • /
    • 2005
  • This paper attempts to develop the analytical model of estimating the fatigue damage using a linear elastic fracture mechanics method. The stress history on a welding member, when a truck passed over a bridge, was defined as a block loading and the crack closure theory was used. These theories explain the influence of a load on a structure. This study undertook an analysis of the stress range frequency considering both dead load stress and crack opening stress. A probability method applied to stress range frequency distribution and the probability distribution parameters of it was obtained by Maximum likelihood Method and Determinant. Monte Carlo Simulation which generates a probability variants (stress range) output failure block loadings. The probability distribution of failure block loadings was acquired by Maximum likelihood Method and Determinant. This can calculate the fatigue reliability preventing the fatigue failure of a welding member. The failure block loading divided by the average daily truck traffic is a predictive remaining life by a day. Fatigue reliability analysis was carried out for the welding member of the bottom flange of a cross beam and the vertical stiffener of a steel box bridge by the proposed model. Results showed that the primary factor effecting failure time was crack opening stress. It was important to decide the crack opening stress for using the proposed model. Also according to the 50% reliability and 90%, 99.9% failure times were indicated.

Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

Fatigue Crack Growth Behavior of 7075-T6Al Alloy under Simple Stepped Variable Amplitude Loading Conditions (7075-T6Al 합금에 있어서 변동하중진폭 하에서의 피로균열성장거동)

  • 신용승
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.80-88
    • /
    • 1997
  • An experimental investigation of the fatigue through crack growth behavior under simple stepped variable loading condition has been performed using Al7075-T651. Experiments were carried out by using cantilever bending type specimens, with chevron notches on a small electro-magnetic test machine. Tensile overloads have a retarding effect on the fatigue crack growth rates, therefore tensile overloads were used for the beneficial effect on the fatigue life. While in most cases compressive overloads have only a vanishing effect on crack growth rates, some experiments with single edge crack tension specimens reveal a marked growth retardation. The stress ratios used in this investigations varies from R=0.32 to 0.81, from R=0.04 to 0.76, from R=-0.15 to 0.73, and from R=-0.33 to 0.68 and the peak load for each case was not varied. The crack growth and crack closure were measured by Kikukawa's compliance method with a strain gauge mounted on the backside of each specimens. The results obtained are as follows. When the stepped variable load was applied, the smaller the stress ration was, the larger the delayed retardation of the crack growth rate was. The fatigue crack growh rate data obtained for through cracks were plotted well against the effective stress intensity factor range from 4.0 to 20.0MP{a^{SQRT}m}. It was found that the effective stress intensity factor range ratio was related well to the opening stress intensity factor, the maximum stress intensity factor, and crack length.

Fatigue Crack Propagation Behaviors on Tensile and Compression Residual Stresses in Weld Zone (용접부의 인장 및 압축잔류응력에 관한 피로균열 전파거동)

  • 이하성;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.3
    • /
    • pp.13-21
    • /
    • 1994
  • Effects of tensile and compression residual stresses in the welded SS41 and A17075-76 on fatigue crack propagation behavior are investigated when a crack propagates from residual stresses region. We propose the fatigue crack growth equation on tensile and compression residual stresses in welded metal. The results obtained in this experimental study are summarized as follows . 1 ) A fatigue crack growth equation which applied fatigue fracture behavior of the welded metal is proposed. (equation omitted) where, $\alpha$, $\beta$, ${\gamma}$ and $\delta$ are constants, and R$_{eff}$ is effective stress ratio [R$_{eff}$=(Kmin+Kres)/(Kmax+Kres)], Kcf is critical fatigue stress intensity factor. The constants are obtained from nonlinear least square method. The relation between crack length and number of cycles obtained by integrating the fatigue crack growth rate equation is in agreement with the experimental data. 2) The experimental results confirmed that the cause of crack extension and retardation by residual stresses has relation to the phenomenon of crack closure. 3) The relaxing trend of residual stresses by the crack propagation was greater In case of compressive residual stress than that of tensile residual stress in the welded metal.tal.

  • PDF

Reliability Analysis for Fatigue Damage of Steel Bridge Details (강교 부재의 피로손상에 대한 신뢰성 해석)

  • Park, Yeon Soo;Han, Suk Yeol;Suh, Byoung Chal
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.475-487
    • /
    • 2003
  • This study developed an analysis model of estimating fatigue damage using the linear elastic fracture mechanics method. Stress history occurring to an element when a truck passed over a bridge was defined as block loading and crack closure theory explaining load interaction effect was applied. Stress range frequency analysis considering dead load stress and crack opening was done. Probability of stress range frequency distribution was applied and the probability distribution parameters were estimated. The Monte Carlo simulation of generating the probability various of distribution was performed. The probability distribution of failure block numbers was obtained. With this the fatigue reliability of an element not occurring in failure could be calculated. The failure block number divided by average daily truck traffic remains the life of a day. Fatigue reliability analysis model was carried out for the welding member of cross beam flange and vertical stiffener of steel box bridge using the proposed model. Consequently, a 3.8% difference was observed between the remaining life in the peak analysis method and in the proposed analysis model. The proposed analysis model considered crack closure phase and crack retard.

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(II) A Study on the Stress Field, Displacement Field and Energy Release Rate in the Dynamic Mode III under Constant Crack Propagation Velocity (직교 이방성체의 동적 응력확대계수에 관한 연구 (II) 등속균열전파 속도하에서 동적모드 III 상태의 응력장, 변위장, 에너지해방률에 관한 연구)

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.331-341
    • /
    • 1993
  • The propagating crack problems under dynamic antiplane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems by theoretical method or experimental method in orthotropic material, it is important to know the dynamic stress intensity factor in the vicinity of crack tip. Therefore the dynamic stress field and dynamic displacement field with dynamic stress intensity factor of orthotropic material in mode III were derived. When the crack propagation speed approachs to zero, the dynamic stress components and dynamic displacement components derived in this paper are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determined by using the concept of crack closure energy with the dynamic stresses and dynamic displacements derived in this paper. Finally, the characteristics of crack propagation are studied with the properties of orthotropic material and crack speed. The variation of angle .alpha. between fiber direction and crack propagating direction and crack propagation speed fairly effect on stress component and displacement component in crack tip. The influence of crack propagation speed on the speed on the stress and displacement is greater in the case of .alpha.=90.deg. than in the case of .alpha.=0.deg. and the faster the crack propagation speed, the greater the stress value and displacement value.