• Title/Summary/Keyword: CpG methylation

Search Result 110, Processing Time 0.02 seconds

Non-CpG Methylation of Pre-1 Sequence in Pig SCNT Blastocysts (돼지 체세포복제 배반포에서 Pre-1 영역의 Non-CpG 메틸화 양상)

  • Ko, Yeoung-Gyu;Im, Gi-Sun;Lee, Hwi-Cheul;Cho, Sang-Rae;Choi, Sun-Ho;Choe, Chang-Yong;Lee, Poong-Yeon;Cho, Chang-Yeon;Cho, Jae-Hyeon;Yoo, Young-Hee
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.93-97
    • /
    • 2011
  • Previously, we reported that the osmolarity conditions in the satellite region were affected CpG DNA methylation status while Pre-1 sequence was not affected CpG DNA methylation in pNT blastocyst stage. This study was conducted to investigate the DNA methylation status of repeat sequences in pig nuclear transfer (pNT) embryos produced under different osmolarity culture conditions. Control group of pNT embryos was cultured in PZM-3 for six days. Other two treatment groups of pNT embryos were cultured in modified PZM-3 with 138 mM NaCl or 0.05 M sucrose (mPZM-3, 320 mOsmol) for two days, and then cultured in PZM-3 (270 mOsmol) for four days. The DNA methylation status of the Pre-1 sequences in blastocysts was characterized using a bisulfite-sequencing method. Intriguingly, in the present study, we found the unique DNA methylation at several non-CpG sequences at the Pre-1 sequences in all groups. The non-CpG methylation was hypermethylated in all three groups, including in vivo group (86.90% of PZM-3; 83.87% of NaCl; 84.82% of sucrose; 90.94% of in vivo embryos). To determine whether certain non-CpG methylated sites were preferentially methylated, we also investigated the methylation degree of CpA, CpT and CpC. Excepting in vivo group, preference of methylation was CpT>CpC>CpA in all three groups investigated. These results indicate that DNA methylation of Pre-1 sequences was hypermethylated in CpG as well as non-CpG site, regardless modification of osmolarity in a culture media.

Regulatory patterns of histone modifications to control the DNA methylation status at CpG islands

  • Jung, In-Kyung;Kim, Dong-Sup
    • Interdisciplinary Bio Central
    • /
    • v.1 no.1
    • /
    • pp.4.1-4.7
    • /
    • 2009
  • Introduction: Histone modifications and DNA methylation are the major factors in epigenetic gene regulation. Especially, revealing how histone modifications are related to DNA methylation is one of the challenging problems in this field. In this paper, we address this issue and propose several plausible mechanisms for precise controlling of DNA methylation status at CpG islands. Materials and Methods: To establish the regulatory relationships, we used 38 histone modification types including H2A.Z and CTCF, and DNA methylation status at CpG islands across chromosome 6, 20, and 22 of human CD4+ T cell. We utilized Bayesian network to construct regulatory network. Results and Discussion: We found several meaningful relationships supported by previous studies. In addition, our results show that histone modifications can be clustered into several groups with different regulatory properties. Based on those findings we predicted the status of methylation level at CpG islands with high accuracy, and suggested core-regulatory network to control DNA methylation status.

Correlation analyses of CpG island methylation of cluster of differentiation 4 protein with gene expression and T lymphocyte subpopulation traits

  • Zhao, Xueyan;Wang, Yanping;Guo, Jianfeng;Wang, Jiying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1141-1149
    • /
    • 2018
  • Objective: Cluster of differentiation 4 protein (CD4) gene is an important immune related gene which plays a significant role in T cell development and host resistance during viral infection. Methods: In order to unravel the relationship of CpG island methylation level of CD4 gene with its gene expression and T lymphocyte subpopulation traits, we used one typical Chinese indigenous breed (Dapulian, DP) and one commercial breed (Landrace), then predicted the CpG island of CD4 gene, determined the methylation status of CpG sites by bisulfite sequencing polymerase chain reaction (BSP), and carried out the correlation analyses of methylation frequencies of CpG sites with mRNA expression and T lymphocyte subpopulation traits. Results: There was one CpG island predicted in the upstream -2 kb region and exon one of porcine CD4 gene, which located 333 bp upstream from the start site of gene and contained nine CpG sites. The correlation analysis results indicated that the methylation frequency of CpG_2 significantly correlated with CD4 mRNA expression in the DP and Landrace combined population, though it did not reach significance level in DP and Landrace separately. Additionally, 15 potential binding transcription factors (TFs) were predicted within the CpG island, and one of them (Jumonji) contained CpG_2 site, suggesting that it may influence the CD4 gene expression through the potential binding TFs. We also found methylation frequency of CpG_2 negatively correlated with T lymphocyte subpopulation traits CD4+CD8-CD3-, CD4-CD8+CD3- and CD4+/CD8+, and positively correlated with CD4-CD8+CD3+ and CD4+CD8+CD3+ (for all correlation, p<0.01) in DP and Landrace combined population. Thus, the CpG_2 was a critical methylation site for porcine CD4 gene expression and T lymphocyte subpopulation traits. Conclusion: We speculated that increased methylation frequency of CpG_2 may lead to the decreased expression of CD4, which may have some kind of influence on T lymphocyte subpopulation traits and the immunity of DP population.

Epigenetic Regulation of Human Riboflavin Transporter 2(hRFT2) in Cervical Cancers from Uighur Women

  • Ma, Jun-Qi;Kurban, Shajidai;Zhao, Jun-Da;Li, Qiao-Zhi;Hasimu, Ayshamgul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2485-2489
    • /
    • 2014
  • In the present study, we studied the hypermethylation of the human riboflavin transporter 2 (hRFT2) gene and regulation of protein expression in biopsies from resected tissues from Uighur cervical squamous cell carcinoma (CSCC) patients and their neighboring normal tissues. hRFT2 gene promoter region methylation sequences were mapped in cervical cancer cell line SiHa by bisulfite-sequencing PCR and quantitative detection of methylated DNA from 30 pairs of Uighur's CSCCs and adjacent normal tissues by MassARRAY (Sequenom, San Diego, CA, USA) and hRFT2 protein expression was analyzed by immunohistochemistry. In SiHa, we identified 2 CG sites methylated from all of 12CpG sites of the hRFT2 gene. Analysis of the data from quantitative analysis of single CpG site methylation by Sequenom MassARRAY platform showed that the methylation level between two CpG sites (CpG 2 and CpG 3) from CpG 1~12 showed significant differences between CSCC and neighboring normal tissues. However, the methylation level of whole target CpG fragments demonstrated no significant variation between CSCC ($0.476{\pm}0.020$) and neighboring normal tissues ($0.401{\pm}0.019$, p>0.05). There was a tendency for translocation the hRFT2 proteins from cytoplasm/membrane to nucleus in CSCC with increase in methylation of CpG 2 and CpG 3 in hRFT2gene promoter regions, which may relate to the genesis of CSCC. Our results suggested that epigenetic modifications are responsible for aberrant expression of the hRFT2 gene, and may help to understand mechanisms of cervical carcinogenesis.

UNDERSTANDING OF EPIGENETICS AND DNA METHYLATION (후생유전학 (Epigenetics)과 DNA methylation의 이해)

  • Oh, Jung-Hwan;Kwon, Young-Dae;Yoon, Byung-Wook;Choi, Byung-Jun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.3
    • /
    • pp.302-309
    • /
    • 2008
  • Epigenetic is usually referring to heritable traits that do not involve changes to the underlying DNA sequence. DNA methylation is known to serve as cellular memory. and is one of the most important mechanism of epigenetic. DNA methylation is a covalent modification in which the target molecules for methylation in mammalian DNA are cytosine bases in CpG dinucleotides. The 5' position of cytosine is methylated in a reaction catalyzed by DNA methyltransferases; DNMTl, DNMT3a, and DNMT3b. There are two different regions in the context of DNA methylation: CpG poor regions and CpG islands. The intergenic and the intronic region is considered to be CpG poor, and CpG islands are discrete CpG-rich regions which are often found in promoter regions. Normally, CpG poor regions are usually methylated whereas CpG islands are generally hypomethylated. DNA methylation is involved in various biological processes such as tissue-specific gene expression, genomic imprinting, and X chromosome inactivation. In general. cancer cells are characterized by global genomic hypomethylation and focal hypermethylation of CpG islands, which are generally unmethylated in normal cells. Gene silencing by CpG hypermethylation at the promotors of tumor suppressor genes is probably the most common mechanism of tumor suppressor inactivation in cancer.

Silencing of Disabled-2 Gene by CpG Methylation in Human Breast Cancer Cell Line, MDA MB-231 Cells (사람의 유방암 세포주인 MDA MB-231 세포에서 CpG 메칠화에 의한 Disabled-2유전자의 발현억제)

  • Ko Myung Hyun;Oh Yu Mi;Park Jun Ho;Jeon Byung Hoon;Han Dong Min;Kim Won Sin
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.802-808
    • /
    • 2005
  • Human Disabled-2 (Dab2) is a candidate tumor suppressor gone that regulates cell growth by c-Fos suppression in normal cells. In many cancer cells, Dab2 expression is lost or greatly diminished in $\∼85\%$ of the breast and ovarian cancers. In this study, we have examined the methylation status of CpG island on Dab2 gene promoter using bisulfite-assisted genomic sequencing and methylation specific PCR (MSP) method in human breast cancer cell line, MDA MB-231 cells. In normal human uterus endometrial cells, Dab2 was completely unmethylated. In contrast, Dab2 was methylated on CpG dinucleotides near the TATA_ box in MDA MB-231 cells. following MDA MB-231 cells by treatment with 5-azacytidine, Dab2 gene were demethylated and reexpressed. Result of this study suggested that silencing of Dab2 gene is correlated to CpG island methylation in human breast cancer cell line, MBA MD-231 cells.

DNA Methylation of Gene Expression in Acanthamoeba castellanii Encystation

  • Moon, Eun-Kyung;Hong, Yeonchul;Lee, Hae-Ahm;Quan, Fu-Shi;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.115-120
    • /
    • 2017
  • Encystation mediating cyst specific cysteine proteinase (CSCP) of Acanthamoeba castellanii is expressed remarkably during encystation. However, the molecular mechanism involved in the regulation of CSCP gene expression remains unclear. In this study, we focused on epigenetic regulation of gene expression during encystation of Acanthamoeba. To evaluate methylation as a potential mechanism involved in the regulation of CSCP expression, we first investigated the correlation between promoter methylation status of CSCP gene and its expression. A 2,878 bp of promoter sequence of CSCP gene was amplified by PCR. Three CpG islands (island 1-3) were detected in this sequence using bioinformatics tools. Methylation of CpG island in trophozoites and cysts was measured by bisulfite sequence PCR. CSCP promoter methylation of CpG island 1 (1,633 bp) was found in 8.2% of trophozoites and 7.3% of cysts. Methylation of CpG island 2 (625 bp) was observed in 4.2% of trophozoites and 5.8% of cysts. Methylation of CpG island 3 (367 bp) in trophozoites and cysts was both 3.6%. These results suggest that DNA methylation system is present in CSCP gene expression of Acanthamoeba. In addition, the expression of encystation mediating CSCP is correlated with promoter CpG island 1 hypomethylation.

Effects of Promoter Methylation on the Expression Levels of Plakoglobin Gene in Both the ARO Thyroid Cancer Cell Line and Cancer Tissues

  • Han, Kyung-Hee;Kim, Tai-Jeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.4
    • /
    • pp.180-188
    • /
    • 2009
  • Plakoglobin (PKG) is a protein linking cadherin adhesion receptors to the actin cytoskeleton and its overexpression has been known to suppress cell proliferation and tumorigenesis in thyroid cancer. We investigated the effect of 5-aza-2'-deoxycytidine (5-Aza-CdR), a DNA methyltransferase inhibitor, on the methylation status of the promoter and the expression of the plakoglobin gene in a thyroid carcinoma cell line (ARO) and papillary thyroid carceinoma. In cultures of ARO cell line incubated without 5-Aza-2'-deoxycytidine (5-Aza-CdR), five of the fifteen CpG sites in the promoter spanning -225 and -54 were methylated at 4.2 - 12.5%. When the cells were treated with 5-Aza-CdR, all the methylated CpG sites were induced to be demethylated except one. In addition, a new methylation at one CpG site, CpG4, was identified at level of 12.0%. The expression level of PKG decreased approximately 10-fold in the 5-Aza-CdR treated cells compared to untreated cells. Different pattern of promoter methylation and expression of PKG was also observed in the tissue samples. CpG10 and CpG12 sites were methylated at 9.0-27.0% in normal tissues. However, in cancer tissues, CpG5 and CpG10 sites were methylated at 10.0-22.0%. Three of ten normal thyroid tissue samples and one of thirteen papillary carcinoma tumor samples showed increased PKG mRNA expression level. PKG protein expression analyzed by the immunohistochemical staining showed higher expression in the tumor compared with normal.

  • PDF

Epigenetic Study of XIST Gene from Female and Male Cells by Pyrosequencing (남성과 여성에서 XIST 유전자의 후성학적 비교 연구)

  • Kim, Hwan-Hee;Yun, Yeo-Jin;Song, Min-Ae;Lee, Su-Man
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • Objective: X inactivation is the silencing one of the two X chromosomes in female mammals for gene dosage on the X-chromosome between female and male. X inactivation is controlled by X inactive-specific transcript (XIST) gene, untranslated RNA. XIST is expressed only from the inactive X (Xi), not expressed from the active X (Xa). The Xist promoter is methylated on the silent Xist allele on the Xa in somatic cells, and less methylated on the Xist-expressing Xi. We investigated the difference of XIST methylation pattern of the promoter and 5'-region of XIST from male (XY) and female (XX) subjects. Methods: The direct quantification of XIST methylation is required for clinical application of normal XX and XY blood. Methylation percentage of eight CpG sites (-1696, -1679, -1475, -1473, -1469, +947, +956, +971) of XIST gene were diagnosed by pyrosequencing. Results: We directly quantitated the methylation percentage of the promoter and 5'-end of XIST by pyrosequencing. The average methylation percentages at CpG6-8 sites (+947, +956, +971) were 45.2% at CpG6, 49.9% at CpG7, and 44.2% at CpG8 from normal female and normal male were 90.6%, 96.7%, 87.8%, respectively. Nether CpG 1-5sites (-1696, -1679, -1475, -1473, -1469) had any effect on XX and XY. Conclusion: This method is sensitive for quantifying the small percentage change in the methylation status of XIST, and may be used for diagnosis.

Identification of Serial DNA Methylation Changes in the Blood Samples of Patients with Lung Cancer

  • Moon, Da Hye;Kwon, Sung Ok;Kim, Woo Jin;Hong, Yoonki
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.2
    • /
    • pp.126-132
    • /
    • 2019
  • Background: The development of lung cancer results from the interaction between genetic mutations and dynamic epigenetic alterations, although the exact mechanisms are not completely understood. Changes in DNA methylation may be a promising biomarker for early detection and prognosis of lung cancer. We evaluated the serial changes in genome-wide DNA methylation patterns in blood samples of lung cancer patients. Methods: Blood samples were obtained for three consecutive years from three patients (2 years before, 1 year before, and after lung cancer detection) and from three control subjects (without lung cancer). We used the MethylationEPIC BeadChip method, which covers the 850,000 bp cytosine-phosphate-guanine (CpG) site, to conduct an epigenome-wide analysis. Significant differentially methylated regions (DMRs) were identified using p-values <0.05 in a correlation test identifying serial methylation changes and serial increase or decrease in ${\beta}$ value above 0.1 for three consecutive years. Results: We found three significant CpG sites with differentially methylated ${\beta}$ values and 7,105 CpG sites with significant correlation from control patients without lung cancer. However, there were no significant DMRs. In contrast, we found 11 significant CpG sites with differentially methylated ${\beta}$ values and 10,562 CpG sites with significant correlation from patients with lung cancer. There were two significant DMRs: cg21126229 (RNF212) and cg27098574 (BCAR1). Conclusion: This study revealed DNA methylation changes that might be implicated in lung cancer development. The DNA methylation changes may be the possible candidate target regions for the early detection and prevention of lung cancer.