• Title/Summary/Keyword: CpG DNA

Search Result 143, Processing Time 0.027 seconds

DNA Methylation changes in Human Cancers (인체 암의 DNA 메틸화 변화)

  • Kwon, Hyeong-Ju;Kang, Gyeong-Hoon
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Epigenetic changes represented by promoter CpG island hypermethylation and histone modification are an important carcinogenetic mechanism, which is found in virtually all histologic types of human cancer. About 60-70% of human genes harbor CpG islands in their promoters and 5' exonal sequences, and some of them undergo aberrant promoter CpG island hypermethylation and subsequent downregulation of gene expression. The loss of expression in tumor suppressor or tumor-related genes results in acceleration of tumorigenic processes. In addition to regional CpG island hypermethylation, diffuse genomic hypomethylation represents an important aspect of DNA methylation changes occurring in human cancer cells and contributes to chromosomal instability. These apparently contrasting methylation changes occur not only in human cancer cells, but also in premalignant cells. CpG island hypermethylation has gained attention for not only the tumorigenic mechanistic process, but also its potential utilization as a tumor biomarker. DNA methylation markers are actively investigated for their potential uses as tumor biomarkers for diagnosis of tumors in body fluids, prognostication of cancer patients, or prediction of chemotherapeutic drug response. In this review, these aspects will be discussed in detail.

  • PDF

Non-CpG Methylation of Pre-1 Sequence in Pig SCNT Blastocysts (돼지 체세포복제 배반포에서 Pre-1 영역의 Non-CpG 메틸화 양상)

  • Ko, Yeoung-Gyu;Im, Gi-Sun;Lee, Hwi-Cheul;Cho, Sang-Rae;Choi, Sun-Ho;Choe, Chang-Yong;Lee, Poong-Yeon;Cho, Chang-Yeon;Cho, Jae-Hyeon;Yoo, Young-Hee
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.93-97
    • /
    • 2011
  • Previously, we reported that the osmolarity conditions in the satellite region were affected CpG DNA methylation status while Pre-1 sequence was not affected CpG DNA methylation in pNT blastocyst stage. This study was conducted to investigate the DNA methylation status of repeat sequences in pig nuclear transfer (pNT) embryos produced under different osmolarity culture conditions. Control group of pNT embryos was cultured in PZM-3 for six days. Other two treatment groups of pNT embryos were cultured in modified PZM-3 with 138 mM NaCl or 0.05 M sucrose (mPZM-3, 320 mOsmol) for two days, and then cultured in PZM-3 (270 mOsmol) for four days. The DNA methylation status of the Pre-1 sequences in blastocysts was characterized using a bisulfite-sequencing method. Intriguingly, in the present study, we found the unique DNA methylation at several non-CpG sequences at the Pre-1 sequences in all groups. The non-CpG methylation was hypermethylated in all three groups, including in vivo group (86.90% of PZM-3; 83.87% of NaCl; 84.82% of sucrose; 90.94% of in vivo embryos). To determine whether certain non-CpG methylated sites were preferentially methylated, we also investigated the methylation degree of CpA, CpT and CpC. Excepting in vivo group, preference of methylation was CpT>CpC>CpA in all three groups investigated. These results indicate that DNA methylation of Pre-1 sequences was hypermethylated in CpG as well as non-CpG site, regardless modification of osmolarity in a culture media.

Structural Analysis of Cu Binding Site in [Cu(I)·d(CpG)·d(CpG)-2H]-1 Complex

  • Im, Yu-Jin;Jung, Sang-Mi;Kang, Ye-Song;Kim, Ho-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1232-1236
    • /
    • 2013
  • The Cu cation binding sites of $[Cu(I){\cdot}d(CpG){\cdot}d(CpG)-2H]^{-1}$ complex have been investigated to explain the $[Cu{\cdot}DNA]$ biological activity caused by the Cu association to DNA. The structure of $[Cu(I){\cdot}d(CpG){\cdot}d(CpG)-2H]^{-1}$ complex was investigated by electrospray ionization mass spectrometry (ESI-MS). The fragmentation patterns of $[Cu(I){\cdot}d(CpG){\cdot}d(CpG)-2H]^{-1}$ complex were analyzed by MS/MS spectra. In the MS/MS spectra of $[Cu(I){\cdot}d(CpG){\cdot}d(CpG)-2H]^{-1}$ complex, three fragment ions were observed with the loss of d(CpG), {d(CpG) + Cyt}, and {d(CpG) + Cyt + dR}. The Cu cation binds to d(CpG) mainly by substituting the $H^+$ of phosphate group. Simultaneously, the Cu cation prefers to bind to a guanine base rather than a cytosine base. Five possible geometries were considered in the attempt to optimize the $[Cu(I){\cdot}d(CpG){\cdot}d(CpG)-2H]^{-1}$ complex structure. The ab initio calculations were performed at B3LYP/6-31G(d) level.

Construction of CpG Motif-enriched DNA Vaccine Plasmids for Enhanced Early Immune Response

  • Park Young Seoub;Hwang Seung Ha;Choi Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.29-33
    • /
    • 2005
  • A DNA vaccine methodology using eukaryote expression vectors to produce immunizing proteins in the vaccinated hosts is a novel approach to the development of vaccine and immuno-therapeutics, and it has achieved considerable success over several infectious diseases and various cancers. To further enhance its efficiency, attempts were made to develop novel plasmid vectors containing multiple immunostimulatory CpG motifs, for rapid and strong immune response. First, a 2.9 kb compact plasmid vector (pVAC), containing CMV promoter, polycloning site, BGH poly(A) terminator, ampicillin resistance gene and pBR322 origin was constructed. A pVAC-hEPO was also constructed, which contained a human erythropoietin gene, for evaluating the transfection efficiency of naked plasmid DNA both in vitro and in vivo. To examine the adjuvant effect of multi-CpG motifs on naked plasmid DNA, 22 and 44 enriched and unmethylated CpG motifs were introduced into pVAC to generate pVAC-ISS1 and pVAC-ISS2, respectively. $100{\mu}g$ of pSecTagB, pVAC, pVAC-ISS1 or pVAC-ISS2 were each injected intramuscularly into the tibilias anterior muscle of Balb/c mice. The level of interleukin-6 induced in the mice injected with pVAC-ISS1 and pVAC-ISS2 were significantly elevated after 12 hours, which were almost 2 and 2.5 times higher than that in the mice injected with pSecTagB, respectively. These results suggest that DNA vaccine plasmids with enriched CpG motifs can induce rapid secretion of interleukin-6 by lymphocytes. In conclusion, these vectors can contribute to the development of adjuvant-free DNA vaccinations against infectious diseases and various cancers.

Effects of lipopolysaccharide and CpG-DNA on burn-induced skin injury

  • Park, Byoung-Kwon;Kim, Dong-Bum;Cho, Sun-Hee;Seo, Jae-Nam;Park, Jae-Bong;Kim, Yong-Sun;Choi, Ihn-Geun;Kwon, Hyeok-Yil;Lee, Young-Hee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.273-278
    • /
    • 2011
  • Destruction of the skin barrier by thermal injury induces microbial invasion, which can lead to the development of systemic infection and septic shock. Microbial pathogens possess pathogen-associated molecular patterns (PAMPs), which are recognized by conserved receptors. To understand the role of PAMPs in thermal injury-induced mice, LPS or CpG-DNA were topically applied to dorsal skin after thermal injury. We observed an increase in the number of inflammatory cell infiltrates as well as thickening in the dermis upon treatment with LPS or CpG-DNA. We also found that expression of IL-$1{\beta}$, MIP-2, and RANTES induced by thermal injury was enhanced by LPS or CpG-DNA. In addition, the proportions of $CD4^+$ and $CD^8+$ T cells in the spleen and lymph nodes were altered by LPS or CpG-DNA. These results provide important information concerning PAMPs-induced inflammation upon thermal injury and provide a basis for studying the role of PAMPs in thermal injury-induced complications.

Adjuvant effect of liposome-encapsulated natural phosphodiester CpG-DNA

  • Kim, Dong-Bum;Kwon, Sang-Hoon;Ahn, Chi-Seok;Lee, Young-Hee;Choi, Soo-Young;Park, Jin-Seu;Kwon, Hyeok-Yil;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.758-763
    • /
    • 2011
  • Immunostimulatory CpG-DNA targeting TLR9 is one of the most extensively evaluated vaccine adjuvants. Previously, we found that a particular form of natural phosphodiester bond CpG-DNA (PO-ODN) encapsulated in a phosphatidyl-${\beta}$-oleoyl-${\gamma}$-palmitoyl ethanolamine (DOPE) : cholesterol hemisuccinate (CHEMS) (1 : 1 ratio) complex (Lipoplex(O)) is a potent adjuvant. Complexes containing peptide and Lipoplex(O) are extremely useful for B cell epitope screening and antibody production without carriers. Here, we showed that IL-12 production was increased in bone marrow derived dendritic cells in a CpG sequence-dependent manner when PO-ODN was encapsulated in Lipoplex(O), DOTAP or lipofectamine. However, the effects of Lipoplex(O) surpassed those of PO-ODN encapsulated in DOTAP or lipofectamine and also other various forms of liposome-encapsulated CpG-DNA in terms of potency for protein antigen-specific IgG production and Th1- associated IgG2a production. Therefore, Lipoplex(O) may have a unique potent immunoadjuvant activity which can be useful for various applications involving protein antigens as well as peptides.

Epigenetics by DNA Methylation for Normal and Cloned Animal Development

  • Shiota, Kunio
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.26-28
    • /
    • 2003
  • "Epigenetics" means the study of heritable changes in gene-activity without changes in DNA sequences. Methylation of the cytosine residue in a CpG dinucleotide sequence is a characteristic of the vertebrate genome. In vertebrates, methylation of DNA mainly occurs at the 5′-position of cytosine in a CpG dinucleotide forming 5-methylcytosine. Methylation of DNA plays a profound role in transcriptional repression of gene expression through several mechanisms. Generally, DNA of inactive genes is more heavily methylated than that of active ones; conversely demethylation of DNA reactivates gene expression in vivo and in vitro.

  • PDF

Effect of DNA methylation on the reactivity of DNA alkylating agents

  • Yoo, Ja-Kyung;Park, Hyun-Ju
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.359.1-359.1
    • /
    • 2002
  • In mammalian species, CpG dinucleotides are highly methylated with 60-90% methylation at the 5-position of cytosine. The pattern of DNA methylation in a cell dramatically affects the function of the DNA by switching genes on or off. Abnormal methylation events occur during aging and in the development of many cancers. Methylated CpG was reported recently to affect the reactivity of agents (mitomycin C and benzo [a]pyrenediolepoxide) that can fromguanine adducts in DNA. (omitted)

  • PDF

Modulatory Activity of CpG Oligonucleotides from Bifidobacterium longum on Immune Cells

  • Choi, Young-Ok;Seo, Jeong-Min;Ji, Geun-Eog
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1285-1288
    • /
    • 2008
  • The purpose of this study was to characterize and investigate the immune activity of CpG oligodeoxynucleotides (ODNs) from Bifidobacterium longum. Bacterial CpG motifs have attracted considerable interests because of their immunomodulatory activities. Genomic DNA from B. longum was prepared and amplified for 4 different 180-188-mer double-stranded ODNs (BLODN1-BLODN4). When immune cells (RAW 264.7 murine macrophages and JAWS II dendritic cells) with these ODNs were treated, BLODN4 induced the highest immune activity. To assess the effectiveness of the CpG sequences within BLODN4, single-stranded 40-mer ODNs containing CpG sequences (sBLODN4-1, sBLODN4-2) were synthesized. sBLODN4-1 induced higher level of cytokines such as interleukin (IL)-12p40 and tumor necrosis factor (TNF)-$\alpha$ by macrophage and IL-6 and TNF-$\alpha$ by dendritic cells than did sBLODN4-2. The results suggest that CpG ODNs-enriched components of B. longum might be useful as an immunomodulatory functional food ingredient.

Identification of Serial DNA Methylation Changes in the Blood Samples of Patients with Lung Cancer

  • Moon, Da Hye;Kwon, Sung Ok;Kim, Woo Jin;Hong, Yoonki
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.2
    • /
    • pp.126-132
    • /
    • 2019
  • Background: The development of lung cancer results from the interaction between genetic mutations and dynamic epigenetic alterations, although the exact mechanisms are not completely understood. Changes in DNA methylation may be a promising biomarker for early detection and prognosis of lung cancer. We evaluated the serial changes in genome-wide DNA methylation patterns in blood samples of lung cancer patients. Methods: Blood samples were obtained for three consecutive years from three patients (2 years before, 1 year before, and after lung cancer detection) and from three control subjects (without lung cancer). We used the MethylationEPIC BeadChip method, which covers the 850,000 bp cytosine-phosphate-guanine (CpG) site, to conduct an epigenome-wide analysis. Significant differentially methylated regions (DMRs) were identified using p-values <0.05 in a correlation test identifying serial methylation changes and serial increase or decrease in ${\beta}$ value above 0.1 for three consecutive years. Results: We found three significant CpG sites with differentially methylated ${\beta}$ values and 7,105 CpG sites with significant correlation from control patients without lung cancer. However, there were no significant DMRs. In contrast, we found 11 significant CpG sites with differentially methylated ${\beta}$ values and 10,562 CpG sites with significant correlation from patients with lung cancer. There were two significant DMRs: cg21126229 (RNF212) and cg27098574 (BCAR1). Conclusion: This study revealed DNA methylation changes that might be implicated in lung cancer development. The DNA methylation changes may be the possible candidate target regions for the early detection and prevention of lung cancer.