• Title/Summary/Keyword: Coverage area

Search Result 996, Processing Time 0.034 seconds

Collaborative Stepwise Movement of Mobile Sensor Nodes for Energy Efficient Dynamic Sensor Network Coverage Maintenance (모바일 센서노드들의 협동형 단계적 이동기법 기반의 에너지 효율적인 동적 센서네트워크 커버리지 관리)

  • Han, Ngoc-Soc;Kim, Seong-Whan
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.535-542
    • /
    • 2009
  • Wireless Sensor Network (WSN) is a wireless network consisting of spatially distributed autonomous devices, using sensors to cooperatively monitor physical or environmental conditions. WSNs face the critical challenge of sustaining long-term operation on limited battery energy. Coverage maintenance has been proposed as a promising approach to prolong network lifetime. Mobile sensors equipped with communication devices can be leveraged to overcome the coverage problem. In this paper, we propose a stepwise movement scheme using perimeter coverage property for the coverage maintenance problem. In our scheme, each sensor monitors neighboring dead nodes, determines vulnerable node (i.e. dead node which makes uncovered area), computes the center of uncovered area HC, and makes a coordinated stepwise movement to compensate the uncovered area. In our experimental results, our scheme shows at least 50 % decrease in the total moving distance which determines the energy efficiency of mobile sensor.

An Efficient Coverage Algorithm for Intelligent Robots with Deadline (데드라인을 고려하는 효율적인 지능형 로봇 커버리지 알고리즘)

  • Jeon, Heung-Seok;Jung, Eun-Jin;Kang, Hyun-Kyu;Noh, Sam-H.
    • The KIPS Transactions:PartA
    • /
    • v.16A no.1
    • /
    • pp.35-42
    • /
    • 2009
  • This paper proposes a new coverage algorithm for intelligent robot. Many algorithms for improving the performance of coverage have been focused on minimizing the total coverage completion time. However, if one does not have enough time to finish the whole coverage, the optimal path could be different. To tackle this problem, we propose a new coverage algorithm, which we call MaxCoverage algorithm, for covering maximal area within the deadline. The MaxCoverage algorithm decides the navigation flow by greedy algorithm for Set Covering Problem. The experimental results show that the MaxCoverage algorithm performs better than other algorithms for random deadlines.

Dominant Species and Factors Related with Plant Coverage in the Cutting Slopes of Forest Road -In Jeollabuk-do Region­- (임도 절토비탈면의 우점식물과 식물피복에 미치는 인자들의 영향 -­전라북도를 대상으로­-)

  • Park, Moon-Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 2002
  • To investigate the dominant species and factors related with plant coverage by road structures and forest environment factors, forest roads elapsed from one year to twelve year after construction had been selected in six county(Gochang-gun, Muju-gun, Imsil-gun, Jangsu-gun, Jeongup-shi and Jinan-gun), and 20m segments were continuously set up in each road. The results obtained from this study are summarized as follows: The species diversity of Gochang, Muju, Imsil, Jangsu, Jeongup and Jinan were 1.304, 1.267, 1.308, 1.193, 1.289 and 1.018, respectively. In process of years, plant coverage was increased gradually and average of plant coverage was 15.3% in forest roads which elapsed three year, and was 86.5% in forest roads which elapsed nine year after construction. The dominant species in the cutting slope of surveyed area were covered with Arundinella hirta, Pinus rigida, Miscanthus sinensis var. purpurascens, Artemisia princeps var. orientalis, Pinus densiflora, Oplismenus undulatifolius, Rubus coreanus, Lysimachia clethroides, Lespedeza bicolor, and Alnus hirsuta of the 152 species. The high correlated factors between plant coverage and variables in cutting slopes appeared elapsed year, soil hardness, mean annual precipitation, vertical grade, inslope and arid humidity in surveyed area.

Sampling Error of Areal Average Rainfall due to Radar Partial Coverage (부분적 레이더 정보에 따른 면적평균강우의 관측오차)

  • Yoo, Chul-Sang;Kim, Byoung-Soo;Kim, Kyoung-Jun;Yoon, Jung-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.97-100
    • /
    • 2008
  • This study estimated the error involved in the areal average rainfall derived incomplete radar information due to radar partial coverage of a basin or sub-basin. This study considers the Han River Basin as an application example for the rainfall observation using the Ganghwa rain radar. Among the total of 24 mid-sized sub-basins of the Han River Basin evaluated in this study, only five sub-basins are fully covered by the radar and three are totally uncovered. Remaining 16 sub-basins are partially covered by the radar leading incomplete radar information available. When only partial radar information is available, the sampling error decreases proportional to the size of the radar coverage, which also varies depending on the number of clusters. It is general that smaller sampling error can be expected when the number of clusters increases if the total area coverage remains the same. This study estimated the sampling error of the areal average rainfall of partially-covered mid-sized sub-basins of the Han River Basin, and the results show that the sampling error could be at least several % to maximum tens % depending on the relative coverage area.

  • PDF

Analysis of factors affecting vegetation cover for stabilization of granite weathered soil forest road cut slopes

  • Seong-Man Kim;Sung-Min Choi;Ye Jun Choe;Yun-Jin Shim;Joon-Woo Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.809-819
    • /
    • 2022
  • This study was conducted to improve the stability of cut slopes of forest roads in granitic weathered soil areas. The study area is a national forest road (road length 28.48 km) in Pyeongchang-gun, Gangwon-do. After data collection, a statistical analysis was performed using IBM SPSS (Ver. 26.0). First, the correlation analysis showed that structure, slope position, soil erosion, slope, and aspect (N, S) were correlated with vegetation coverage (p < 0.05). Elapsed years, slope distance, and aspect (E, W) were found to have no correlation with vegetation coverage. (p > 0.05) Second, one-way ANOVA and Kruskal-Wallis test results showed that vegetation coverage was worse when the slope was located at the top or the middle of the slope than at the bottom of the slope. In addition, the site with sheathing and gabions showed good vegetation coverage when compared with the site without structures. In the case of soil erosion, areas with severe damage and moderate damage showed worse vegetation coverage. Therefore, it is necessary to strengthen the slope angle of the cut soil of the granitic weathered soil area from 1 : 0.5 - 1.2 to 1 : 0.8 - 1.5. In addition, structures such as sheathing and gabions should be installed on granitic weathered land.

Adjacent Matrix-based Hole Coverage Discovery Technique for Sensor Networks

  • Wu, Mary
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.169-176
    • /
    • 2019
  • Wireless sensor networks are used to monitor and control areas in a variety of military and civilian areas such as battlefield surveillance, intrusion detection, disaster recovery, biological detection, and environmental monitoring. Since the sensor nodes are randomly placed in the area of interest, separation of the sensor network area may occur due to environmental obstacles or a sensor may not exist in some areas. Also, in the situation where the sensor node is placed in a non-relocatable place, some node may exhaust energy or physical hole of the sensor node may cause coverage hole. Coverage holes can affect the performance of the entire sensor network, such as reducing data reliability, changing network topologies, disconnecting data links, and degrading transmission load. It is possible to solve the problem that occurs in the coverage hole by finding a coverage hole in the sensor network and further arranging a new sensor node in the detected coverage hole. The existing coverage hole detection technique is based on the location of the sensor node, but it is inefficient to mount the GPS on the sensor node having limited resources, and performing other location information processing causes a lot of message transmission overhead. In this paper, we propose an Adjacent Matrix-based Hole Coverage Discovery(AMHCD) scheme based on connectivity of neighboring nodes. The method searches for whether the connectivity of the neighboring nodes constitutes a closed shape based on the adjacent matrix, and determines whether the node is an internal node or a boundary node. Therefore, the message overhead for the location information strokes does not occur and can be applied irrespective of the position information error.

The solid angle estimation of acetabular coverage of the femoral head (입체각을 이용한 관골구와 대퇴골두의 접촉영역 측정)

  • 최교환;임제택;김선일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.79-88
    • /
    • 1998
  • We developed a method for the solid angle estimation of acetabular coverage of the femoral head in 3D space. The superior half of the femoral head is modeled as part of a sphere. And the tangent lines connecting from a set of points of the acetabular outline to the center of the fitted sphere are obtained. The lines passthrough the unit sphere whose center is the same as that of the femoral head. The interesecting points form a boundary on the unit sphere. With the points on the unit sphere, we calculate the covered area of the femoral headand estimate the solid angle. Solid angle is defined asthe suface area within the boundary on the unit sphere. In this measurements, the solid angle of normal subjects is on an average 4.3(rad) and the corresponding acetabular coverage is 68%. Unlinke the conventional methods, this solid angle estimation shows real 3D acetabular coverage.

  • PDF

An Visual Density Index for the Housing Landscape Evaluation Focused on the Elevation Coverage Index (공동주택 경관평가를 위한 시각밀도 지표에 관한 연구 입면차폐도와 규제지침을 중심으로)

  • 강인호;이승미
    • Journal of the Korean housing association
    • /
    • v.15 no.3
    • /
    • pp.53-62
    • /
    • 2004
  • Recently the landscape of housing has been emphasized. This trend seems to reflect the negative aspects of housing landscape in urban area. Throughout the analysis on the various visual density index, the following findings were obtained; 1) Elevation blockage ratio(EBR) was permitted differently according to the types of housing blocks, and the preference of block layout was different to the location of site. 2) EBR regulation level was acceptable. But 40m level of general area should be stepped up to the 35m level. 3) The correlation between the floor area ratio(FAR) and the EBR was not high. Therefore it is reasonable to regulate the EBR to the location. 4) Elevation coverage ratio(ECR) was highly correlated with the FAR. It means that FAR can substitute for the ECR, and ECR should be regulated to the level of FAR.

Rotational Wireless Video Sensor Networks with Obstacle Avoidance Capability for Improving Disaster Area Coverage

  • Bendimerad, Nawel;Kechar, Bouabdellah
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.509-527
    • /
    • 2015
  • Wireless Video Sensor Networks (WVSNs) have become a leading solution in many important applications, such as disaster recovery. By using WVSNs in disaster scenarios, the main goal is achieving a successful immediate response including search, location, and rescue operations. The achievement of such an objective in the presence of obstacles and the risk of sensor damage being caused by disasters is a challenging task. In this paper, we propose a fault tolerance model of WVSN for efficient post-disaster management in order to assist rescue and preparedness operations. To get an overview of the monitored area, we used video sensors with a rotation capability that enables them to switch to the best direction for getting better multimedia coverage of the disaster area, while minimizing the effect of occlusions. By constructing different cover sets based on the field of view redundancy, we can provide a robust fault tolerance to the network. We demonstrate by simulating the benefits of our proposal in terms of reliability and high coverage.

The Process of River Landscape for 10years in Tan-chun Ecological Landscape Reserve (탄천 생태경관보전지역에서의 10년간 하천경관 형성과정)

  • Choi, Jung-Kwon;Choi, Mi-Kyoung;Lee, Ga-Yeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.107-115
    • /
    • 2017
  • This study illustrated the process of bar structure and vegetation coverage to understand historical changes of riverbed and suppose adaptive management in Tan-chun ecological landscape reserve. The study site that lower reach of the Tan-chun are known as habitats of migratory bird and aquatic species with dynamic riverbed. Aerial photos from 2006 to 2016 and surveyed vegetation data in 2006 and 2016 were used by analysis of landscape changes and comparison of vegetation coverage. Study area is classified into 3 sites (A: straight site, B: meandering site, C: meandering and junction with Yangjae-cheon). The result showed that bar area of A and C sites gradually increased, B site decreased during 10 years. Also, ratio of bar area to vegetation coverage and level of vegetation coverage increased in all sites during 10 years. All sites seem to have experienced the terrestrialization with time. On the other hand, ratio of annual vegetation increased and ratio of perennial vegetation decreased in C site in 2016 compare to 2006. Because area of Japanese Hops (Humulus japonicas) as one type of annual vegetation increased, other vegetation could not grow up by its powerful expandability. It is time to make active adaptive management based on not only continuos monitoring but also revaluation of river conditions in order to enhance habitat quality and quantity in Tan-chun ecological landscape reserve.