• Title/Summary/Keyword: Cover System

Search Result 1,649, Processing Time 0.034 seconds

A Study of Strength Analysis for Nacelle Cover of 2MW Wind Turbine System (2MW 풍력발전시스템 너셀커버의 강도해석에 대한 연구)

  • Ko, Woo-Sik;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • The nacelle cover and nosecone are made of composite materials, especially the stiffener is added in the nacelle cover in order to enhance it's stiffness. The nacelle cover consists of all three covers of left, right side cover and upper cover and each cover is connected with bolts. Also, the nacelle cover and nacelle frame are connected with bolts. The nacelle cover and nosecone have a important role to prevent the components of nacelle and rotor from external circumstances such as snow, rain and wind. Therefore, it is necessary to analyze and evaluate the strength and deformation for them in the design level. According to GL Wind Specifications, this paper shows the results that nacelle cover of 2MW wind turbine satisfy the strength and deformation throughout analysis using Patran/Nastran programs.

Seismic response of concrete gravity dam-ice covered reservoir-foundation interaction systems

  • Haciefendioglu, K.;Bayraktar, A.;Turker, T.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.499-511
    • /
    • 2010
  • This paper examines the ice cover effects on the seismic response of concrete gravity dam-reservoir-foundation interaction systems subjected to a horizontal earthquake ground motion. ANSYS program is used for finite element modeling and analyzing the ice-dam-reservoir-foundation interaction system. The ice-dam-reservoir interaction system is considered by using the Lagrangian (displacementbased) fluid and solid-quadrilateral-isoparametric finite elements. The Sariyar concrete gravity dam in Turkey is selected as a numerical application. The east-west component of Erzincan earthquake, which occurred on 13 March 1992 in Erzincan, Turkey, is selected for the earthquake analysis of the dam. Dynamic analyses of the dam-reservoir-foundation interaction system are performed with and without ice cover separately. Parametric studies are done to show the effects of the variation of the length, thickness, elasticity modulus and density of the ice-cover on the seismic response of the dam. It is observed that the variations of the length, thickness, and elasticity modulus of the ice-cover influence the displacements and stresses of the coupled system considerably. Also, the variation of the density of the ice-cover cannot produce important effects on the seismic response of the dam.

A Study on Glass Processing System

  • Song, Jai-Chul
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.84-93
    • /
    • 2015
  • This study is for the development of Cover Glass Grinding Processing System. This system is developed for manufacturing a mass product system grinding cover glasses with highly precise mechanism, and we improved resulted quality. In the development process, we developed a complete process technology through mechanical design, image processing technology, spindle control, mark identification algorithm etc. With this cover glass grinding development, we could developed process technology, image processing technology, organization mechanisms and control algorithms.

Fuzzy inference based cover thickness estimation of reinforced concrete structure quantitatively considering salty environment impact

  • Do, Jeong-Yun
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.145-161
    • /
    • 2006
  • This article involves architecting prototype-fuzzy expert system for designing the nominal cover thickness by means of fuzzy inference for quantitatively representing the environment affecting factor to reinforced concrete in chloride-induced corrosion environment. In this work, nominal cover thickness to reinforcement in concrete was determined by the sum of minimum cover thickness and tolerance to that defined from skill level, constructability and the significance of member. Several variables defining the quality of concrete and environment affecting factor (EAF) including relative humidity, temperature, cyclic wet and dry, and the distance from coast were treated as fuzzy variables. To qualify EAF the environment conditions of cycle degree of wet-dry, relative humidity, distance from coast and temperature were used as input variables. To determine the nominal cover thickness a qualified EAF, concrete grade, and watercement ratio were used. The membership functions of each fuzzy variable were generated from the engineering knowledge and intuition based on some references as well as some international codes of practice.

Gating System Design and Casting Simulation for the Submarine Mast Cover (잠수함 마스트 커버의 주조방안설계 및 주조해석)

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.945-952
    • /
    • 2023
  • In this study, the sand casting process was applied to design the gating system and perform casting simulation in order to domestically produce the submarine mast cover. Based on simulation results, casting experiments were conducted to produce a soundness prototype. The design concept of the mast cover's gating system was based on the design of bell casting. By arranging eight tower-type gates in a circle at 45° intervals, the flow of melt flowing into each gate was uniform and did not mix with each other, and the velocity of melt was also uniform. The mast cover made of Ni-Al-Bronze alloy has no unfilled parts. However, small porosities and flow marks occurred on the surface in several places. Yield strength and ultimate tensile strength are 279.3 MPa and 675.7 MPa, respectively, and elongation is 21.2%.

Conceptual Design of a Cover System for the Degmay Uranium Tailings Site (Degmay 우라늄광산 폐기물 부지 복원을 위한 복토층 개념설계)

  • Saidov, Vaysidin;Kessel, David S.;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.189-200
    • /
    • 2016
  • The Republic of Tajikistan has ten former uranium mining sites. The total volume of all tailings is approximately 55 million tonnes, and the covered area is more than 200 hectares. The safe management of legacy uranium mining and tailing sites has become an issue of concern. Depending on the performance requirements and site-specific conditions (location in an arid, semiarid or humid region), a cover system for uranium tailings sites could be constructed using several material layers using both natural and man-made materials. The purpose of this study is to find a feasible cost-effective cover system design for the Degmay uranium tailings site which could provide a long period (100 years) of protection. The HELP computer code was used in the evaluation of potential Degmay cover system designs. As a result of this study, a cover system with 70 cm thick percolation layer, 30 cm thick drainage layer, geomembrane liner and 60 cm thick barrier soil layer is recommended because it minimizes cover thickness and would be the most cost-effective design.

A Numerical Analysis for Light Weight and Strength Improvement of Wind Power System Nacelle Cover (풍력발전기용 나셀외장부의 경량화 및 강도향상에 관한 수치해석)

  • Kang, Ji-Woong;Kwon, Oh-Heon;Jeong, Woo-Yul
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2010
  • Wind power system is composed by 3 major parts, rotor blade, nacelle and tower. Especially, the nacelle cover has an important role to prevent the component of nacelle and rotor from an extreme external circumstance. Therefore it is necessary to analyze and evaluate the stress distribution and deformation for them in the design level. There are two major points in nacelle cover analysis. The one is nacelle cover itself and the other is cover support structure. According to GL specification, this study shows the result that CFRP nacelle cover of wind turbine satisfies the strength and deformation through numerical analysis using the commercial finite element analysis program.

A Study on the Fire Properties of MOF Insulation Cover and Field Condition of 22.9kV Class Power Receiving System (22.9kV 수변전설비의 실태 및 계기용변성기 절연커버의 출화특성에 관한 연구)

  • Choi Chung-Seog;Kim Dong-Woo;Han Woon-Ki;Lee Ki-Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.56-60
    • /
    • 2005
  • We studied fire properties of MOF(Metering Out Fit) insulation cover and field condition of 22.9kV power receiving system. $49.5\%$ of formal equipments were installed indoors, whereas $40.8\%$ of informal equipments were installed as H-type. Insulation treatment was not done at a $22.4\%$ ratio of main line($27.7\%$ of transformer, $70.2\%$ of COS, $10.4\%$ of MOF). Fire pattern analysis showed that the fire started at the secondary part of OC wire. In the result of DTA(Differential Thermal Analysis), normal cover showed exothermic reactions at $310^{\circ}C,\;399^{\circ}C\;and\;510^{\circ}C$ (endothermic reactions at $382^{\circ}C$). Whereas damaged cover showed exothermic reactions at $412^{\circ}C$(endothermic reactions at $389^{\circ}C$). In the result of TGA(Thermo Gravimetric Analysis), the thermal weight change of normal cover was similar compared to damaged cover. In the result of FT-IR analysis, normal cover showed absorption peaks at $3,024cm^{-l},\;2,921cm^{-l},\;1,600cm^{-1},\;1,492cm^{-1},\;1,451cm^{-1},\;1,154cm^{-l},\;1,027cm^{-1},\;906cm^{-1}$. Whereas, in case of tracked cover, the absorption peaks that were shown in normal cover disappeared and different absorption peak was shown at $966cm^{-1}$.

A Study on the Flow Field Characteristics of Air Induction System for Reducing the Signal-to-Noise in the MAFS Output

  • Yoo, Seoung-Chool
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • This study presents the flow visualization results, velocity and turbulence intensity measurements made within an air filter cover and entry region of a mass air flow sensor (MAFS) which is used in an induction system of 3.8L engine. Flow structure in two air filter cover assemblies were examined. The first was a clear plastic replica of the production cover while the second was a modified clear plastic cover with a geometry configured to reduce fluctuations. High speed flow visualization and laser doppler velocimetry (LDV) systems were used to reveal and analyze the flow field characteristics encountered in the sensor design process under steady flow conditions. A 40-watt copper vapor laser was used as a light source. Its beam is focused down to a sheet of light approximately 1.5mm thick. The light scattered off the particles was recorded by a 16mm high speed rotating prism camera at 5000 frames per second. A comparison of the flow patterns and LDV measurements in the original and modified air filter covers is presented to illustrate the controlling effect of the cover design on the turbulence structure formation near the bypass and on the sensor output signal. In both axial and radial planes of the main passage it was found that the turbulence flow pattern is remarkably influenced by the air filter cover and main passage configuration.

  • PDF

A Study on the Low Pressure Injection Molding of Automotive Seat-back Cover (자동차용 시트백 커버의 저압사출성형에 관한 연구)

  • Ko, Byung-Doo;Ham, Kyoung-Chun;Jang, Dong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.100-106
    • /
    • 2008
  • In this paper, the injection molding process of automotive seat-back cover is analyzed in terms of simulation and of experiment. FE analysis was used to obtain molding conditions such as injection pressure, filling pattern, packing, shrinkage. Vacuum system for low pressure injection molding is developed in the experiment. Low pressure injection molded parts have been compared with conventional molded parts in terms of molding quality and mechanical properties. Based on the results, good product and the productivity improvement can be obtained in low pressure injection molding for automotive seat-back cover.