• Title/Summary/Keyword: Cover Image

Search Result 717, Processing Time 0.021 seconds

Distortion of the Dose Profile in a Three-dimensional Moving Phantom to Simulate Tumor Motion during Image-guided Radiosurgery (방사선수술에서 종양 움직임을 재현시킨 움직이는 팬텀을 이용하여 선량 분포의 왜곡에 대한 연구)

  • Kim, Mi-Sook;Ha, Seong-Hwan;Lee, Dong-Han;Ji, Young-Hoon;Yoo, Seong-Yul;Cho, Chul-Koo;Yang, Kwang-Mo;Yoo, Hyung-Jun;Seo, Young-Seok;Park, Chan-Il;Kim, Il-Han;Ye, Seong-Jun;Park, Jae-Hong;Kim, Kum-Bae
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.268-277
    • /
    • 2007
  • Purpose: Respiratory motion is a considerable inhibiting factor for precise treatment with stereotactic radiosurgery using the CyberKnife (CK). In this study, we developed a moving phantom to simulate three-dimensional breathing movement and investigated the distortion of dose profiles between the use of a moving phantom and a static phantom. Materials and Methods: The phantom consisted of four pieces of polyethylene; two sheets of Gafchromic film were inserted for dosimetry. Treatment was planned to deliver 30 Gy to virtual tumors of 20, 30, 40, and 50 mm diameters using 104 beams and a single center mode. A specially designed robot produced three-dimensional motion in the right-left, anterior-posterior, and craniocaudal directions of 5, 10 and 20 mm, respectively. Using the optical density of the films as a function of dose, the dose profiles of both static and moving phantoms were measured. Results: The prescribed isodose to cover the virtual tumors on the static phantom were 80% for 20 mm, 84% for 30 mm, 83% for 40 mm and 80% for 50 mm tumors. However, to compensate for the respiratory motion, the minimum isodose levels to cover the moving target were 70% for the $30{\sim}50$ mm diameter tumors and 60% for a 20 mm tumor. For the 20 mm tumor, the gaps between the isodose curves for the static and moving phantoms were 3.2, 3.3, 3.5 and 1.1 mm for the cranial, caudal, right, and left direction, respectively. In the case of the 30 mm tumor, the gaps were 3.9, 4.2, 2.8, 0 mm, respectively. In the case of the 40 mm tumor, the gaps were 4.0, 4.8, 1.1, and 0 mm, respectively. In the case of the 50 mm diameter tumor, the gaps were 3.9, 3.9, 0 and 0 mm, respectively. Conclusion: For a tumor of a 20 mm diameter, the 80% isodose curve can be planned to cover the tumor; a 60% isodose curve will have to be chosen due to the tumor motion. The gap between these 80% and 60% curves is 5 mm. In tumors with diameters of 30, 40 and 50 mm, the whole tumor will be covered if an isodose curve of about 70% is selected, equivalent of placing a respiratory margin of below 5 mm. It was confirmed that during CK treatment for a moving tumor, the range of distortion produced by motion was less than the range of motion itself.

Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics (MODIS 지표면 온도 자료와 지구통계기법을 이용한 지상 기온 추정)

  • Shin, HyuSeok;Chang, Eunmi;Hong, Sungwook
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • Near surface air temperature data which are one of the essential factors in hydrology, meteorology and climatology, have drawn a substantial amount of attention from various academic domains and societies. Meteorological observations, however, have high spatio-temporal constraints with the limits in the number and distribution over the earth surface. To overcome such limits, many studies have sought to estimate the near surface air temperature from satellite image data at a regional or continental scale with simple regression methods. Alternatively, we applied various Kriging methods such as ordinary Kriging, universal Kriging, Cokriging, Regression Kriging in search of an optimal estimation method based on near surface air temperature data observed from automatic weather stations (AWS) in South Korea throughout 2010 (365 days) and MODIS land surface temperature (LST) data (MOD11A1, 365 images). Due to high spatial heterogeneity, auxiliary data have been also analyzed such as land cover, DEM (digital elevation model) to consider factors that can affect near surface air temperature. Prior to the main estimation, we calculated root mean square error (RMSE) of temperature differences from the 365-days LST and AWS data by season and landcover. The results show that the coefficient of variation (CV) of RMSE by season is 0.86, but the equivalent value of CV by landcover is 0.00746. Seasonal differences between LST and AWS data were greater than that those by landcover. Seasonal RMSE was the lowest in winter (3.72). The results from a linear regression analysis for examining the relationship among AWS, LST, and auxiliary data show that the coefficient of determination was the highest in winter (0.818) but the lowest in summer (0.078), thereby indicating a significant level of seasonal variation. Based on these results, we utilized a variety of Kriging techniques to estimate the surface temperature. The results of cross-validation in each Kriging model show that the measure of model accuracy was 1.71, 1.71, 1.848, and 1.630 for universal Kriging, ordinary Kriging, cokriging, and regression Kriging, respectively. The estimates from regression Kriging thus proved to be the most accurate among the Kriging methods compared.

An Application of Satellite Image Analysis to Visualize the Effects of Urban Green Areas on Temperature (위성영상을 이용한 도시녹지의 기온저감 효과 분석)

  • Yoon, Min-Ho;Ahn, Tong-Mahn
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.46-53
    • /
    • 2009
  • Urbanization brings several changes to the natural environment. Its consequences can have a direct effect on climatic features, as in the Urban Heat Island Effect. One factor that directly affects the urban climate is the green area. In urban areas, vegetation is suppressed in order to accommodate manmade buildings and streets. In this paper we analyze the effect of green areas on the urban temperature in Seoul. The period selected for analysis was July 30th, 2007. The ground temperature was measured using Landsat TM satellite imagery. Land cover was calculated in terms of city area, water, bare soil, wet lands, grass lands, forest, and farmland. We extracted the surface temperature using the Linear Regression Model. Then, we did a regression analysis between air temperature at the Automatic Weather Station and surface temperature. Finally, we calculated the temperature decrease area and the population benefits from the green areas. Consequently, we determined that a green area with a radius of 500m will have a temperature reduction area of $67.33km^2$, in terms of urban area. This is 11.12% of Seoul's metropolitan area and 18.09% of the Seoul urban area. We can assume that about 1,892,000 people would be affected by this green area's temperature reduction. Also, we randomly chose 50 places to analysis a cross section of temperature reduction area. Temperature differences between the boundaries of green and urban areas are an average of $0.78^{\circ}C$. The highest temperature difference is $1.7^{\circ}C$, and the lowest temperature difference is $0.3^{\circ}C$. This study has demonstrated that we can understand how green areas truly affect air temperature.

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios - Connecting Green Network Across the North and South in Seoul - (서울 도시계획 정책을 적용한 기후영향평가 - 남북녹지축 조성사업을 대상으로 -)

  • Kwon, Hyuk-Gi;Yang, Ho-Jin;Yi, Chaeyeon;Kim, Yeon-Hee;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.134-153
    • /
    • 2015
  • When making urban planning, it is important to understand climate effect caused by urban structural changes. Seoul city applies UPIS(Urban Plan Information System) which provides information on urban planning scenario. Technology for analyzing climate effect resulted from urban planning needs to developed by linking urban planning scenario provided by UPIS and climate analysis model, CAS(Climate Analysis Seoul). CAS develops for analyzing urban climate conditions to provide realistic information considering local air temperature and wind flows. Quantitative analyses conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod(Meteorology and atmospheric Photochemistry Meso-scale model). In order to reflect land cover and elevation of the latest information, CAS used to highly accurate raster data (1m) sourced from LiDAR survey and KOMPSAT-2(KOrea Multi-Purpose SATellite) satellite image(4m). For more realistic representation of land surface characteristic, DSM(Digital Surface Model) and DTM(Digital Terrain Model) data used as an input data for CFD(Computational Fluid Dynamics) model. Eight inflow directions considered to investigate the change of flow pattern, wind speed according to reconstruction and change of thermal environment by connecting green area formation. Also, MetPhoMod in CAS data used to consider realistic weather condition. The result show that wind corridors change due to reconstruction. As a whole surface temperature around target area decreases due to connecting green area formation. CFD model coupled with CAS is possible to evaluate the wind corridor and heat environment before/after reconstruction and connecting green area formation. In This study, analysis of climate impact before and after created the green area, which is part of 'Connecting green network across the north and south in Seoul' plan, one of the '2020 Seoul master plan'.

Derivation of Green Coverage Ratio Based on Deep Learning Using MAV and UAV Aerial Images (유·무인 항공영상을 이용한 심층학습 기반 녹피율 산정)

  • Han, Seungyeon;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1757-1766
    • /
    • 2021
  • The green coverage ratio is the ratio of the land area to green coverage area, and it is used as a practical urban greening index. The green coverage ratio is calculated based on the land cover map, but low spatial resolution and inconsistent production cycle of land cover map make it difficult to calculate the correct green coverage area and analyze the precise green coverage. Therefore, this study proposes a new method to calculate green coverage area using aerial images and deep neural networks. Green coverage ratio can be quickly calculated using manned aerial images acquired by local governments, but precise analysis is difficult because components of image such as acquisition date, resolution, and sensors cannot be selected and modified. This limitation can be supplemented by using an unmanned aerial vehicle that can mount various sensors and acquire high-resolution images due to low-altitude flight. In this study, we proposed a method to calculate green coverage ratio from manned or unmanned aerial images, and experimentally verified the proposed method. Aerial images enable precise analysis by high resolution and relatively constant cycles, and deep learning can automatically detect green coverage area in aerial images. Local governments acquire manned aerial images for various purposes every year and we can utilize them to calculate green coverage ratio quickly. However, acquired manned aerial images may be difficult to accurately analyze because details such as acquisition date, resolution, and sensors cannot be selected. These limitations can be supplemented by using unmanned aerial vehicles that can mount various sensors and acquire high-resolution images due to low-altitude flight. Accordingly, the green coverage ratio was calculated from the two aerial images, and as a result, it could be calculated with high accuracy from all green types. However, the green coverage ratio calculated from manned aerial images had limitations in complex environments. The unmanned aerial images used to compensate for this were able to calculate a high accuracy of green coverage ratio even in complex environments, and more precise green area detection was possible through additional band images. In the future, it is expected that the rust rate can be calculated effectively by using the newly acquired unmanned aerial imagery supplementary to the existing manned aerial imagery.

Analysis of Temperature Profiles by Land Use and Green Structure on Built-up Area (시가화지역 토지이용 및 녹지구조에 따른 온도변화 연구)

  • Hong Suk-Rwan;Lee Kyong-Jae;Han Bong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.19 no.4
    • /
    • pp.375-384
    • /
    • 2005
  • This study was conducted selecting 44 places with a block unit subject to urban area in Gangnam-gu, to analyze a temperature change according to land use and green structure. In this study, it was used the broad-wide urban temperature, supported by Landset TM and ETM+ satellite image 6scene(1999${\~}$2002). The result of the research, the land use pattern has slightly influence on a temperature change of urban area. The result from correlation analysis between temperature and the factors affected by land cover type, such as building-to-land ratio(A correlation coefficient is 0.368${\~}$0.709) have positive correlation and green area ratio(a correlation coefficient is -0.551${\~}$-0.860) have negative correlation. The result from correlation analysis between temperature and green capacity of the land, crown projection area ratio, each factor have negative correlation with temperature, as showing that a correlation coefficient of green capacity of the land is -0.577(June 2006)${\~}$-0.882(June 1999) and crown projection area ratio's is -0.549(June 2001)${\~}$-0.817(June 1999). The result of the regression analysis for establishing urban area temperature change prediction model showed that green capacity of the land of the explanation variable was accepted.

Automatic Coastline Extraction and Change Detection Monitoring using LANDSAT Imagery (LANDSAT 영상을 이용한 해안선 자동 추출과 변화탐지 모니터링)

  • Kim, Mi Kyeong;Sohn, Hong Gyoo;Kim, Sang Pil;Jang, Hyo Seon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.45-53
    • /
    • 2013
  • Global warming causes sea levels to rise and global changes apparently taking place including coastline changes. Coastline change due to sea level rise is also one of the most significant phenomena affected by global climate change. Accordingly, Coastline change detection can be utilized as an indicator of representing global climate change. Generally, Coastline change has happened mainly because of not only sea level rise but also artificial factor that is reclaimed land development by mud flat reclamation. However, Arctic coastal areas have been experienced serious change mostly due to sea level rise rather than other factors. The purposes of this study are automatic extraction of coastline and identifying change. In this study, in order to extract coastline automatically, contrast of the water and the land was maximized utilizing modified NDWI(Normalized Difference Water Index) and it made automatic extraction of coastline possibile. The imagery converted into modified NDWI were applied image processing techniques in order that appropriate threshold value can be found automatically to separate the water and land. Then the coastline was extracted through edge detection algorithm and changes were detected using extracted coastlines. Without the help of other data, automatic extraction of coastlines using LANDSAT was possible and similarity was found by comparing NLCD data as a reference data. Also, the results of the study area that is permafrost always frozen below $0^{\circ}C$ showed quantitative changes of the coastline and verified that the change was accelerated.

Methodology to Apply Low Spatial Resolution Optical Satellite Images for Large-scale Flood Mapping (대규모 홍수 매핑을 위한 저해상도 광학위성영상의 활용 방법)

  • Piao, Yanyan;Lee, Hwa-Seon;Kim, Kyung-Tak;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.787-799
    • /
    • 2018
  • Accurate and effective mapping is critical step to monitor the spatial distribution and change of flood inundated area in large scale flood event. In this study, we try to suggest methods to use low spatial resolution satellite optical imagery for flood mapping, which has high temporal resolution to cover wide geographical area several times per a day. We selected the Sebou watershed flood in Morocco that was occurred in early 2010, in which several hundred $km^2$ area of the Gharb lowland plain was inundated. MODIS daily surface reflectance product was used to detect the flooded area. The study area showed several distinct spectral patterns within the flooded area, which included pure turbid water and turbid water with vegetation. The flooded area was extracted by thresholding on selected band reflectance and water-related spectral indices. Accuracy of these flooding detection methods were assessed by the reference map obtained from Landsat-5 TM image and qualitative interpretation of the flood map derived. Over 90% of accuracies were obtained for three methods except for the NDWI threshold. Two spectral bands of SWIR and red were essential to detect the flooded area and the simple thresholding on these bands was effective to detect the flooded area. NIR band did not play important role to detect the flooded area while it was useful to separate the water-vegetation mixed flooded classes from the purely water surface.

Method of Measuring Color Difference Between Images using Corresponding Points and Histograms (대응점 및 히스토그램을 이용한 영상 간의 컬러 차이 측정 기법)

  • Hwang, Young-Bae;Kim, Je-Woo;Choi, Byeong-Ho
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.305-315
    • /
    • 2012
  • Color correction between two or multiple images is very crucial for the development of subsequent algorithms and stereoscopic 3D camera system. Even though various color correction methods are proposed recently, there are few methods for measuring the performance of these methods. In addition, when two images have view variation by camera positions, previous methods for the performance measurement may not be appropriate. In this paper, we propose a method of measuring color difference between corresponding images for color correction. This method finds matching points that have the same colors between two scenes to consider the view variation by correspondence searches. Then, we calculate statistics from neighbor regions of these matching points to measure color difference. From this approach, we can consider misalignment of corresponding points contrary to conventional geometric transformation by a single homography. To handle the case that matching points cannot cover the whole regions, we calculate statistics of color difference from the whole image regions. Finally, the color difference is computed by the weighted summation between correspondence based and the whole region based approaches. This weight is determined by calculating the ratio of occupying regions by correspondence based color comparison.

Effects of Areal Interpolation Methods on Environmental Equity Analysis (면내삽법이 환경적 형평성 분석에 미치는 영향)

  • Jun, Byong-Woon
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.6
    • /
    • pp.736-751
    • /
    • 2008
  • Although a growing number of studies have commonly used a simple areal weighting interpolation method to quantify demographic characteristics of impacted areas in environmental equity analysis, the results obtained are inevitably imprecise because of the method's unrealistic assumption that population is evenly distributed within a census enumeration unit. Two alternative areal interpolation methods such as intelligent areal weighting and regression methods can account for the distributional biases in the estimation of impacted populations by making use of additional information about the geographic distribution of population. This research explores five areal interpolation methods for estimating the population characteristics of impacted areas in environmental equity analysis and evaluates the sensitivity of the outcomes of environmental equity analysis to areal interpolation methods. This study used GIS techniques to allow areal interpolation to be informed by the distribution of land cover types, as inferred from a satellite image. in both the source and target units. Independent samples t-test statistics were measured to verify the environmental equity hypothesis while coefficients of variation were calculated to compare the relative variability and consistency in the socioeconomic characteristics of populations at risk over different areal interpolation methods. Results show that the outcomes of environmental equity analysis in the study area are not sensitive to the areal interpolation methods used in estimating affected populations, but the population estimates within the impacted areas are largely variable as different areal interpolation methods are used. This implies that the use of different areal interpolation methods may to some degree alter the statistical results of environmental equity analysis.

  • PDF