• Title/Summary/Keyword: Cover Image

Search Result 717, Processing Time 0.021 seconds

Accuracy Assessment of Unsupervised Change Detection Using Automated Threshold Selection Algorithms and KOMPSAT-3A (자동 임계값 추출 알고리즘과 KOMPSAT-3A를 활용한 무감독 변화탐지의 정확도 평가)

  • Lee, Seung-Min;Jeong, Jong-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.975-988
    • /
    • 2020
  • Change detection is the process of identifying changes by observing the multi-temporal images at different times, and it is an important technique in remote sensing using satellite images. Among the change detection methods, the unsupervised change detection technique has the advantage of extracting rapidly the change area as a binary image. However, it is difficult to understand the changing pattern of land cover in binary images. This study used grid points generated from seamless digital map to evaluate the satellite image change detection results. The land cover change results were extracted using multi-temporal KOMPSAT-3A (K3A) data taken by Gimje Free Trade Zone and change detection algorithm used Spectral Angle Mapper (SAM). Change detection results were presented as binary images using the methods Otsu, Kittler, Kapur, and Tsai among the automated threshold selection algorithms. To consider the seasonal change of vegetation in the change detection process, we used the threshold of Differenced Normalized Difference Vegetation Index (dNDVI) through the probability density function. The experimental results showed the accuracy of the Otsu and Kapur was the highest at 58.16%, and the accuracy improved to 85.47% when the seasonal effects were removed through dNDVI. The algorithm generated based on this research is considered to be an effective method for accuracy assessment and identifying changes pattern when applied to unsupervised change detection.

Estimating Impervious Surface Fraction of Tanchon Watershed Using Spectral Analysis (분광혼합분석 기법을 이용한 탄천유역 불투수율 평가)

  • Cho Hong-lae;Jeong Jong-chul
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.457-468
    • /
    • 2005
  • Increasing of impervious surface resulting from urban development has negative impacts on urban environment. Therefore, it is absolutely necessary to estimate and quantify the temporal and spatial aspects of impervious area for study of urban environment. In many cases, conventional image classification methods have been used for analysis of impervious surface fraction. However, the conventional classification methods have shortcoming in estimating impervious surface. The DN value of the each pixel in imagery is mixed result of spectral character of various objects which exist in surface. But conventional image classification methods force each pixel to be allocated only one class. And also after land cover classification, it is requisite to additional work of calculating impervious percentage value in each class item. This study used the spectral mixture analysis to overcome this weakness of the conventional classification methods. Four endmembers, vegetation, soil, low albedo and high albedo were selected to compose pure land cover objects. Impervious surface fraction was estimated by adding low albedo and high albedo. The study area is the Tanchon watershed which has been rapidly changed by the intensive development of housing. Landsat imagery from 1988, 1994 to 2001 was used to estimate impervious surface fraction. The results of this study show that impervious surface fraction increased from $15.6\%$ in 1988, $20.1\%$ in 1994 to $24\%$ in 2001. Results indicate that impervious surface fraction can be estimated by spectral mixture analysis with promising accuracy.

Analysis of Surface Temperature on Urban Green Space Using Unmanned Aerial Vehicle Images - A Case of Sorasan Mt. Nature Garden, Iksan, South Korea - (무인항공 영상을 활용한 도심녹지 표면온도 특성 분석 - 익산 소라산 자연마당을 대상으로 -)

  • CHOI, Tae-Young;MOON, Ho-Gyeong;CHA, Jae-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.90-103
    • /
    • 2017
  • This study analyzed the surface temperature characteristics of urban green spaces under high summer temperatures to clarify the functions of green spaces in reducing urban temperatures. We obtained accurate surface temperature data using highresolution unmanned aerial vehicle images of the survey site, which was an isolated green space in the city. We analyzed differences in the surface temperature by land cover type, vegetation type, species type, and the relationship between surface temperature and vegetation volume. Based on the results, among the land cover types, wetlands and forests had low temperatures and paving areas had very high temperatures. Regarding vegetation type, broad-leaved trees had lower temperatures than coniferous trees in forests. However, in planted areas, coniferous trees had lower temperatures than broad-leaved trees. The temperature of long grass was higher than that of short grass, which suggested that the volume of grass affected the temperature. Regarding forest species type, the temperature of broad-leaved Robinia pseudoacacia forest and mixed broad-leaved forest was lower than coniferous Pinus densiflora forest. There was a slight difference in temperature between R. pseudoacacia forest and mixed broad-leaved forest. The analysis of the relationship between vegetation volume and temperature by forest species type indicated a negative correlation, where the temperature decreased with increasing vegetation volume, similar to the results of previous studies. However, we found a weak positive correlation in R. pseudoacacia forest; therefore, an increase in volume may not reduce the surface temperature depending on the dominant species.

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

Extraction and Accuracy Assessment of Deforestation Area using GIS and Remotely Sensed Data (GIS와 원격탐사자료를 이용한 산림전용지 추출 및 정확도 평가)

  • Lee, Gihaeng;Lee, Jungsoo
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.365-373
    • /
    • 2012
  • This study purposed to extract and assess the accuracy of assessment for deforestation area in Wonju city using medium resolution satellite image. The total size of deforestation area during the last nine years (2000-2008) was about 467 ha, and it was occurred annually about 52 ha. The most frequent form of deforestation was settlements (72%). Ninety percent of the size of deforestation was less than 2 ha in size. In addition, 79 percent of deforestation area was found within 500 m from the road network and within 100 m of the Forest/Non-forest boundary. This study compared the deforestation based on the administrative information (GIS deforestationI) with the deforestation (RS deforestation) extracted from the satellite imagery by vegetation indices (NDVI, NBR, NDWI). Extraction accuracy, mean-standard deviation${\times}1.5$ applied 3 by 3 filtering, showed reliable accuracy 35.47% k-value 0.20. However, error could be occurred because of the difference of land-use change and land-cover change. The actual rate of land-cover change deforestation area was 32% on administrative information. The 7.52% of forest management activities area was misjudged as deforestation by RS deforestation. Finally, the comparison of land-cover change deforestation (GIS deforestationII) with the RS deforestation accuracy, as a result NDVI mean-standard deviation${\times}2$ applied 3 by 3 filtering, showed improved accuracy 61.23%, k-value 0.23.

The Performance Improvement of U-Net Model for Landcover Semantic Segmentation through Data Augmentation (데이터 확장을 통한 토지피복분류 U-Net 모델의 성능 개선)

  • Baek, Won-Kyung;Lee, Moung-Jin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1663-1676
    • /
    • 2022
  • Recently, a number of deep-learning based land cover segmentation studies have been introduced. Some studies denoted that the performance of land cover segmentation deteriorated due to insufficient training data. In this study, we verified the improvement of land cover segmentation performance through data augmentation. U-Net was implemented for the segmentation model. And 2020 satellite-derived landcover dataset was utilized for the study data. The pixel accuracies were 0.905 and 0.923 for U-Net trained by original and augmented data respectively. And the mean F1 scores of those models were 0.720 and 0.775 respectively, indicating the better performance of data augmentation. In addition, F1 scores for building, road, paddy field, upland field, forest, and unclassified area class were 0.770, 0.568, 0.433, 0.455, 0.964, and 0.830 for the U-Net trained by original data. It is verified that data augmentation is effective in that the F1 scores of every class were improved to 0.838, 0.660, 0.791, 0.530, 0.969, and 0.860 respectively. Although, we applied data augmentation without considering class balances, we find that data augmentation can mitigate biased segmentation performance caused by data imbalance problems from the comparisons between the performances of two models. It is expected that this study would help to prove the importance and effectiveness of data augmentation in various image processing fields.

The Effect of Service Quality of Farm Party on Cognitive and Emotional Images of the Farmhouse and Revisit Intention (팜파티 서비스 품질이 팜파티 농가의 인지적 이미지와 정서적 이미지, 재방문 의도에 미치는 영향)

  • Kim, Na-Hyung;Kwon, Ki-Joon
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.10
    • /
    • pp.72-84
    • /
    • 2017
  • This study aims to investigate how the service quality of a farm party affects the cognitive and emotional images of the farmhouse and revisit intentions by designing a research model and testing hypotheses. First, findings of the test show that when it comes to service quality, the physical environment and program contents of farm party have an effect on the cognitive image of the farmhouse while the qualification of party operators does not. Second, the physical environment of the party and party operator's qualification affect the emotional image but the program contents has no effect. Third, The cognitive and emotional images have an effect on the revisit intentions. It is certain that the farm party serves as cultural contents facilitating the rural economy and an emerging business model in the rural tourism. When we approach the farm party as a business model to provide service, not cultural contents as party, however, farmhouses may build a positive image as a new tourist destination and also see their economy facilitated. This study looks into Seoul and Gyeonggi areas and thus is geographically limited and does not cover national phenomenon.

Development of a Compound Classification Process for Improving the Correctness of Land Information Analysis in Satellite Imagery - Using Principal Component Analysis, Canonical Correlation Classification Algorithm and Multitemporal Imagery - (위성영상의 토지정보 분석정확도 향상을 위한 응용체계의 개발 - 다중시기 영상과 주성분분석 및 정준상관분류 알고리즘을 이용하여 -)

  • Park, Min-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.569-577
    • /
    • 2008
  • The purpose of this study is focused on the development of compound classification process by mixing multitemporal data and annexing a specific image enhancement technique with a specific image classification algorithm, to gain more accurate land information from satellite imagery. That is, this study suggests the classification process using canonical correlation classification technique after principal component analysis for the mixed multitemporal data. The result of this proposed classification process is compared with the canonical correlation classification result of one date images, multitemporal imagery and a mixed image after principal component analysis for one date images. The satellite images which are used are the Landsat 5 TM images acquired on July 26, 1994 and September 1, 1996. Ground truth data for accuracy assessment is obtained from topographic map and aerial photograph, and all of the study area is used for accuracy assessment. The proposed compound classification process showed superior efficiency to appling canonical correlation classification technique for only one date image in classification accuracy by 8.2%. Especially, it was valid in classifying mixed urban area correctly. Conclusively, to improve the classification accuracy when extracting land cover information using Landsat TM image, appling canonical correlation classification technique after principal component analysis for multitemporal imagery is very useful.

A Study on Determination of the Matching Size of IKONOS Stereo Imagery (IKONOS 스테레오 영상의 매칭사이즈 결정연구)

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Lee, Chang-No;Seo, Doo-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.201-205
    • /
    • 2007
  • In the post-Cold War era, acquisition technique of high-resolution satellite imagery (HRSI) has begun to commercialize. IKONOS-2 satellite imaging data is supplied for the first time in the 21st century. Many researchers testified mapping possibility of the HRSI data instead of aerial photography. It is easy to renew and automate a topographical map because HRSI not only can be more taken widely and periodically than aerial photography, but also can be directly supplied as digital image. In this study matching size of IKONOS Geo-level stereo image is presented lot production of digital elevation model (DEM). We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters (EOPs) to minimize search area, the matching is tarried out based on this line. The experiment on matching size is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, window size for the highest correlation coefficient is selected as propel size for matching. As the results of experiment, the proper size was selected as $123{\times}123$ pixels window, $13{\times}13$ pixels window, $129{\times}129$ pixels window and $81{\times}81$ pixels window in the water area, urban land, forest land and agricultural land, respectively. Of course, determination of the matching size by the correlation coefficient may be not absolute appraisal method. Optimum matching size using the geometric accuracy therefore, will be presented by the further work.

  • PDF

Utilizing Geographic Information System for Analyzing Land Use Suitability in a Urban Area - A Case Study of Kumi City - (도시지역의 토지이용 적지분석을 위한 지리정보시스템의 이용 - 구미시를 중심으로 -)

  • Lee, Jin-Duk;Lee, Hyun-Hwa;Kim, Sung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.29-38
    • /
    • 2001
  • This study addresses the topic of suitability analysis for helping with land use planning, which is one of important decision-making in urban planning, utilizing geographic information system. Covering the Kumi City before integrating with neighbor county, the site suitabilities for land uses, which are categorized into residential, commercial, industrial and green, were analyzed using the overlay method based upon the database constructed for this study. In the process, assessment criteria which include environmental factors and relative weights were determined and also the land use/cover map and NDVI map which were generated through satellite image processing were included in the database. The suitability maps by four function spaces were derived according to the grade and compared with the present land use state and the land use concept map of urban master plan. For more accurate analysis, practical developing plan, land price data, soil data should be included. Also if the demand estimation data by each land use had been added, the reliability of location allocation could have been raised.

  • PDF