• 제목/요약/키워드: Cover Image

검색결과 717건 처리시간 0.025초

A Study on the Calculation Methods on the Ratio of Green Coverage Using Satellite Images and Land Cover Maps (위성영상과 토지피복도를 활용한 녹피율 산정방법 연구)

  • Moon, Chang-Soon;Shim, Joon-Young;Kim, Sang-Bum;Lee, Shi-Young
    • Journal of Korean Society of Rural Planning
    • /
    • 제16권4호
    • /
    • pp.53-60
    • /
    • 2010
  • This study aims at suggesting the attributes and limitations of each methods through the evaluation of the verified analysis results, so that it will be possible to select an efficient method that may be applied to assess the green coverage ratio. Green coverage areas of each sites subject to this study were assessed utilizing the following four methods. First, assessment of green coverage area through direct planimetry of satellite images. Second, assessment of green coverage area using land cover map. Third, assessment of green coverage area utilizing the band value in satellite images. Forth, assessment of green coverage area using and land cover map and reference materials. For this study, four urban zones of the City of Seosan in Chungcheongnam-do. As a result, this study show that the best calculation method is the one that combines the merits of first and second methods. This method is expected to be suitable for application in research sites of middle size and above. It is also deemed that it will be possible to apply this method in researches of wide area, such as setting up master plans for parks and green zones established by each local self-government organizations.

Detection of forest Free - South Slope Features from Land Cover Classification in Mongolia

  • Bayarsaikhan, Uudus;Boldgiv, Bazartseren;Kim, Kyung-Ryul;Park, Kyung-Ae;Lee, Don-Koo
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.354-359
    • /
    • 2009
  • Land cover types of Hustai National Park (HNP) in Mongolia, a hotspot area with rare species, were classified and their temporal changes were evaluated using Landsat MSS TM/ETM data between 1994 and 2000. Maximum likelihood classification analysis showed an overall accuracy of 88.0% and 85.0% for the 1994 and 2000 images, respectively. Kappa coefficients associated with the classification were resulted to 0.85 for 1994 and 0.82 for 2000 image. Land cover types revealed significant temporal changes in the classification maps between 1994 and 2000. The area has increased considerably by $166.5km^2$ for mountain steppe. By contrast, agricultural areas and degraded areas affected by human being activity were decreased by $46.1km^2$ and $194.8km^2$ over the six year span, respectively. These areas were replaced by mountain steppe area. Specifically, forest area was noticeably fragmented, accompanied by the decrease of $\sim400$ ha. The forest area revealed a pattern with systematic gain and loss associated with the specific phenomenon called as forest free-south slope. We discussed the potential environmental conditions responsible for the systematic pattern and addressed other biological impacts by outbreaks of forest pests and ungulates.

  • PDF

Land Use Analysis of Chung-Ju Road Circumstance Using Remote Sensing (RS를 이용한 충주시 간선도로 주변의 토지이용 분석)

  • Shin, Ke-Jong;Yu, Young-Geol;Hwang, Eui-Jin
    • The Journal of the Korea Contents Association
    • /
    • 제9권6호
    • /
    • pp.436-443
    • /
    • 2009
  • There have been rapid increases to the demands for modeling diverse and complex spatial phenomena and utilizing spatial data through the computer across all the aspects of society. As a result, the importance and utilization of remote sensing and GIS's(geographic information systems) have also increased. It can produce digital data of enormous accuracy and value by incorporating remote sensing images into GIS analysis technology and make various thematic maps by classifying and analyzing land cover. Once such a map is made for the target area, it can easily do modeling and constant monitoring based on the map, revise the database with ease, and thus efficiently update geo-spatial information. Under the goal of analyzing changes to land cover along the road by combining the remote sensing and GIS technology, this study classified land cover from the images of two periods, detected changes to the six classes over ten years, and obtained statistics about the study area's quantitative area changes in order to provide basic decision making data for urban planning and development. By analyzing land use along the road, one can set up plans for the area along the road and the downtown to supplement each other.

Effects of Speckle Filtering on Synthetic Aperture Radar (SAR) Imagery (레이더 영상자료의 Speckle 필터링 효과)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • 제12권2호
    • /
    • pp.155-168
    • /
    • 1996
  • Speckle noise has been a primary concern to many applications of synthetic aperture radar (SAR) imagery. In recent years, several satellites with radar imaging systems were launched and the use of SAR data are expected to be increased rapidly The objectives of this study are to provide introductory understanding on radar speckle filtering and to compare the effects of several filtering methods that are relatively unknown to user community. Two study sites were extracted from the RADARSAT SAR data obtained over the suburban areas near Seoul. The study sites include relatively homogeneous cover types, such as reservoir, parking lot, rice pad, and deciduous forest. Five filters (mean filter, median filter, sigma filter, local statistics filter, and autocorrelation filter) were applied to the SAR imagery and their effects were evaluated from the aspects of both image smoothing and edge preservation. In overall, the evaluation results indicate that the local statistics filter and autocorrelation filter, that are based on a speckle model, are more effective to suppress speckle within homogeneous cover type while maintaining the edge sharpness between cover types.

An Enhanced Cloud Cover Reading Algorithm Against Aerosol (연무에 강한 구름 판독 알고리즘)

  • Yun, Han-Kyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • 제12권1호
    • /
    • pp.7-12
    • /
    • 2019
  • Clouds in the atmosphere are important variables that affect the temperature change by reflecting the radiant energy of the earth surface as well as changing the amount of sunshine by reflecting the sun's radiation energy. Especially, the amount of sunshine on the surface is very important It is essential information. Therefore, eye-observations of the sky on the surface of the earth have been enhanced by satellite photographs or relatively narrowed observation equipments. Therefore, cloud automatic observing systems have been developed in order to replace the human observers, but depending on the seasons, the reliability of observations is not high enough to be applied in the field due to pollutants or fog in the atmosphere. Therefore, we have developed a cloud observation algorithm that is robust against smog and fog. It is based on the calculation of the degree of aerosol from the all-sky image, and is added to the developed cloud reader to develop season- and climate-insensitive algorithms to improve reliability. The result compared to existing cloud readers and the result of cloud cover is improved.

KOMPSAT-3A Urban Classification Using Machine Learning Algorithm - Focusing on Yang-jae in Seoul - (기계학습 기법에 따른 KOMPSAT-3A 시가화 영상 분류 - 서울시 양재 지역을 중심으로 -)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • 제36권6_2호
    • /
    • pp.1567-1577
    • /
    • 2020
  • Urban land cover classification is role in urban planning and management. So, it's important to improve classification accuracy on urban location. In this paper, machine learning model, Support Vector Machine (SVM) and Artificial Neural Network (ANN) are proposed for urban land cover classification based on high resolution satellite imagery (KOMPSAT-3A). Satellite image was trained based on 25 m rectangle grid to create training data, and training models used for classifying test area. During the validation process, we presented confusion matrix for each result with 250 Ground Truth Points (GTP). Of the four SVM kernels and the two activation functions ANN, the SVM Polynomial kernel model had the highest accuracy of 86%. In the process of comparing the SVM and ANN using GTP, the SVM model was more effective than the ANN model for KOMPSAT-3A classification. Among the four classes (building, road, vegetation, and bare-soil), building class showed the lowest classification accuracy due to the shadow caused by the high rise building.

Copyright Protection for Digital Image by Watermarking Technique

  • Ali, Suhad A.;Jawad, Majid Jabbar;Naser, Mohammed Abdullah
    • Journal of Information Processing Systems
    • /
    • 제13권3호
    • /
    • pp.599-617
    • /
    • 2017
  • Due to the rapid growth and expansion of the Internet, the digital multimedia such as image, audio and video are available for everyone. Anyone can make unauthorized copying for any digital product. Accordingly, the owner of these products cannot protect his ownership. Unfortunately, this situation will restrict any improvement which can be done on the digital media production in the future. Some procedures have been proposed to protect these products such as cryptography and watermarking techniques. Watermarking means embedding a message such as text, the image is called watermark, yet, in a host such as a text, an image, an audio, or a video, it is called a cover. Watermarking can provide and ensure security, data authentication and copyright protection for the digital media. In this paper, a new watermarking method of still image is proposed for the purpose of copyright protection. The procedure of embedding watermark is done in a transform domain. The discrete cosine transform (DCT) is exploited in the proposed method, where the watermark is embedded in the selected coefficients according to several criteria. With this procedure, the deterioration on the image is minimized to achieve high invisibility. Unlike the traditional techniques, in this paper, a new method is suggested for selecting the best blocks of DCT coefficients. After selecting the best DCT coefficients blocks, the best coefficients in the selected blocks are selected as a host in which the watermark bit is embedded. The coefficients selection is done depending on a weighting function method, where this function exploits the values and locations of the selected coefficients for choosing them. The experimental results proved that the proposed method has produced good imperceptibility and robustness for different types of attacks.

Development of Ubuntu-based Raspberry Pi 3 of the image recognition system (우분투 기반 라즈베리 파이3의 영상 인식 시스템 개발)

  • Kim, Gyu-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.868-871
    • /
    • 2016
  • Recently, Unmanned vehicle and Wearable Technology using iot research is being carried out. The unmanned vehicle is the result of it technology. Robots, autonomous navigation vehicle and obstacle avoidance, data communications, power, and image processing, technology integration of a unmanned vehicle or an unmanned robot. The final goal of the unmanned vehicle manual not autonomous by destination safely and quickly reaching. This paper managed to cover One of the key skills of unmanned vehicle is to image processing. Currently battery technology of unmanned vehicle can drive for up to 1 hours. Therefore, we use the Raspberry Pi 3 to reduce power consumption to a minimum. Using the Raspberry Pi 3 and to develop an image recognition system. The goal is to propose a system that recognizes all the objects in the image received from the camera.

  • PDF

Optimization of Input Features for Vegetation Classification Based on Random Forest and Sentinel-2 Image (랜덤포레스트와 Sentinel-2를 이용한 식생 분류의 입력특성 최적화)

  • LEE, Seung-Min;JEONG, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제23권4호
    • /
    • pp.52-67
    • /
    • 2020
  • Recently, the Arctic has been exposed to snow-covered land due to melting permafrost every year, and the Korea Geographic Information Institute(NGII) provides polar spatial information service by establishing spatial information of the polar region. However, there is a lack of spatial information on vegetation sensitive to climate change. This research used a multi-temporal Sentinel-2 image to perform land cover classification of the Ny-Ålesund in Arctic Svalbard. In the pre-processing step, 10 bands and 6 vegetation spectral index were generated from multi-temporal Sentinel-2 images. In image-classification step is consisted of extracting the vegetation area through 8-class land cover classification and performing the vegetation species classification. The image classification algorithm used Random Forest to evaluate the accuracy and calculate feature importance through Out-Of-Bag(OOB). To identify the advantages of multi- temporary Sentinel-2 for vegetation classification, the overall accuracy was compared according to the number of images stacked and vegetation spectral index. Overall accuracy was 77% when using single-time Sentinel-2 images, but improved to 81% when using multi-time Sentinel-2 images. In addition, the overall accuracy improved to about 83% in learning when the vegetation index was used additionally. The most important spectral variables to distinguish between vegetation classes are located in the Red, Green, and short wave infrared-1(SWIR1). This research can be used as a basic study that optimizes input characteristics in performing the classification of vegetation in the polar regions.

Comparative Analysis of NDWI and Soil Moisture Map Using Sentinel-1 SAR and KOMPSAT-3 Images (KOMPSAT-3와 Sentinel-1 SAR 영상을 적용한 토양 수분도와 NDWI 결과 비교 분석)

  • Lee, Jihyun;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • 제38권6_4호
    • /
    • pp.1935-1943
    • /
    • 2022
  • The development and application of a high-resolution soil moisture mapping method using satellite imagery has been considered one of the major research themes in remote sensing. In this study, soil moisture mapping in the test area of Jeju Island was performed. The soil moisture was calculated with optical images using linearly adjusted Synthetic Aperture Radar (SAR) polarization images and incident angle. SAR Backscatter data, Analysis Ready Data (ARD) provided by Google Earth Engine (GEE), was used. In the soil moisture processing process, the optical image was applied to normalized difference vegetation index (NDVI) by surface reflectance of KOMPSAT-3 satellite images and the land cover map of Environmental Systems Research Institute (ESRI). When the SAR image and the optical images are fused, the reliability of the soil moisture product can be improved. To validate the soil moisture mapping product, a comparative analysis was conducted with normalized difference water index (NDWI) products by the KOMPSAT-3 image and those of the Landsat-8 satellite. As a result, it was shown that the soil moisture map and NDWI of the study area were slightly negative correlated, whereas NDWI using the KOMPSAT-3 images and the Landsat-8 satellite showed a highly correlated trend. Finally, it will be possible to produce precise soil moisture using KOMPSAT optical images and KOMPSAT SAR images without other external remotely sensed images, if the soil moisture calculation algorithm used in this study is further developed for the KOMPSAT-5 image.