• 제목/요약/키워드: Cover Depth

검색결과 430건 처리시간 0.026초

NOAA/AVHRR 영상을 이용한 적설분포 및 적설심 추출 (Extraction of Snow Cover Area and Depth Using NOAA/AVHRR Images)

  • 강수만;권형중;김성준
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.254-259
    • /
    • 2005
  • The shape of a streamflow hydrograph is very much controlled by the area and depth of snow cover in mountain area. The purpose of this study is to suggest extraction methods for snow cover area and depth using NOAA/AVHRR images in Soyanggang watershed. Snow cover area maps ware derived form channel 1, 3, 4 images of NOAA/AVHRR based on threshold value. In order to extract snow cover depth, snow cover area maps were overlaid daily snow depth data form 7 meteorological observation stations. Snow cover area and depth was mapped for period of Dec. 2002 and Mar. 2003. For evaluating snowmelt changes, depletion curve was created using daily snow cover area in the same period. It is necessary to compare these results with observed data and check the applicability of the suggested method in snowmelt simulation.

  • PDF

MODIS 위성영상을 이용한 국내 5대강 유역 적설분포 및 적설심 추출 (Extraction of Snow Cover Area and Depth Using MODIS Image for 5 River Basins South Korea)

  • 홍우용;신형진;김성준
    • 한국관개배수논문집
    • /
    • 제14권2호
    • /
    • pp.225-235
    • /
    • 2007
  • The shape of streamflow hydrograph during the early period of spring is very much controlled by the area and depth of snow cover especially in mountainous area. When we simulate the streamfolw of a watershed snowmelt, we need some information for snow cover extent and depth distribution as parameters and input data in the hydrological models. The purpose of this study is to suggest an extraction method of snow cover area and snow depth distribution using Terra MODIS image. Snow cover extent for South Korea was extracted for the period of December 2000 and April 2006. For the snow cover area, the snow depth was interpolated using the snow depth data from 69 meteorological observation stations. With these data, it is necessary to run a hydrological model considering the snow-related data and compare the simulated streamflow with the observed data and check the applicability for the snowmelt simulation.

  • PDF

지중강판 구조물의 최소토피고 평가 및 상부토피 보강 방안 (Evaluation of minimum depth of soil cover and reinforcement of soil cover above soil-steel bridge)

  • 정현식;이종구;조성민;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.425-432
    • /
    • 2004
  • In this paper, the results of the numerical analysis for the minimum depth of soil cover have been compared with those of currently suggested codes. Based on this comparison, the minimum depth of soil cover for the structures with long spans was suggested. Results showed that the actual depth of the soil cover required against soil failure over a circular and low-profile arch structure does not vary significantly with the size of the span and for the circular structure, the minimum depth of the soil cover was about 1.5m, and for the low-profile arch structures, below about 1.6m. And the previously established code in which the minimum depth of soil cover is defined to linearly increase with the increase in the span (CHBDC, 2001) was very conservative. For the structure with the relieving slab, the maximum live load thrust was reduced by about 36 percent and the maximum moment about 81 percent. The numerical analysis gave more conservative estimation of the live-load thrusts than the other design methods.

  • PDF

Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber-reinforced concrete slabs

  • Yoo, Doo-Yeol;Kwon, Ki-Yeon;Yang, Jun-Mo;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.711-719
    • /
    • 2017
  • This study investigates the effects of reinforcing bar diameter and cover depth on the shrinkage behavior of restrained ultra-high-performance fiber-reinforced concrete (UHPFRC) slabs. For this, twelve large-sized UHPFRC slabs with three different rebar diameters ($d_b=9.5$, 15.9, and 22.2 mm) and four different cover depths (h=5, 10, 20, and 30 mm) were fabricated. In addition, a large-sized UHPFRC slab without steel rebar was fabricated for evaluating degree of restraint. Test results revealed that the uses of steel rebar with a large diameter, leading to a larger reinforcement ratio, and a low cover depth are unfavorable regarding the restrained shrinkage performance of UHPFRC slabs, since a larger rebar diameter and a lower cover depth result in a higher degree of restraint. The shrinkage strain near the exposed surface was high because of water evaporation. However, below a depth of 18 mm, the shrinkage strain was seldom influenced by the cover depth; this was because of the very dense microstructure of UHPFRC. Finally, owing to their superior tensile strength, all UHPFRC slabs with steel rebars tested in this study showed no shrinkage cracks until 30 days.

라이닝-지반 수리상호작용이 해저터널에 미치는 영향 (Effect of hydraulic lining-ground interaction on subsea tunnels)

  • 신종호;박동인;주은정
    • 한국터널지하공간학회 논문집
    • /
    • 제10권1호
    • /
    • pp.49-57
    • /
    • 2008
  • 라이닝 작용수압과 유입량은 지하수 수위 아래 혹은 하 해저터널 설계시 중요하게 고려되어야할 수리요소이다. 이 요소들은 수심, 심도, 수리경계조건의 영향을 받는다. 본 논문에서는 각 설계요소가 라이닝하중과 유입량에 미치는 영향을 수치해석적 도구를 이용하여 살펴보았다. 수심영향해석은 심도 30 m에 건설된 마제형 터널에 대하여 수심과 라이닝/지반 상대투수계수 비를 다양하게 변화시켜 조사하였고, 심도영향 해석은 수심 60 m의 터널에 대하여 심도 및 라이닝/지반 상대투수계수 비를 변화시켜 해석하였다. 해석결과 수리경계조건과 상관없이 수심 및 심도가 증가함에 따라 지반하중이 증가하였다. 이는 배수터널은 침투력의 영향으로, 비배수 터널은 정수압의 영향으로 수두가 증가함에 따라 지반하중이 증가함을 보여준 것이다. 수심, 심도의 증가에 따라 유입량은 선형적으로 증가하였으며, 라이닝/지반 상대투수계수비와 유입량관계는 펼쳐진 S자 곡선(stretched S-curve)형태로 나타남을 확인하였다.

  • PDF

염해환경에서의 RC보의 허용 균열폭 산정에 관한 연구 (A Study on the Allowable Crack Width of RC Beam with Corrosive Environment)

  • Kim, Dongbaek;Kwon, Soondong;An, Kwanghee
    • 한국재난정보학회 논문집
    • /
    • 제11권2호
    • /
    • pp.253-261
    • /
    • 2015
  • 콘크리트에 발생하는 균열은 구조물의 진행성 파괴로 연결되어 구조물의 안전성에 직결되는 문제이며, 철근콘크리트 구조물에 발생한 균열은 사용성 뿐만 아니라 유해물질의 침입에 따른 열화를 촉진하여 내구성 문제와 직결된다. 특히 외부 염화물 이온의 침입에 따라 철근에 발생하는 부식은 철근콘크리트 구조물의 안전성에도 큰 영향을 미친다. 따라서, 콘크리트의 균열을 제어하기 위해 초기재령 콘크리트에서의 수화, 수분이동을 규명하여 안전성 및 내구성을 확보하기 위해 허용 균열폭을 합리적으로 산정하는 방법이 필요하다. 본 연구에서는 철근콘크리트 구조물의 철근부식에 영향을 미치는 영향인자를 분석하고 부식영향인자의 변화에따른 부식의 정도를 파악할 수 있는 철근콘크리트 보를 제작하여 실험을 실시한다. 이러한 실험의 결과를 이용하여 부식영향인자를 고려한 허용 균열폭에 대한 식을 제안한다.

Behaviour of soil-steel composite bridge with various cover depths under seismic excitation

  • Maleska, Tomasz;Beben, Damian
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.747-764
    • /
    • 2022
  • The design codes and calculation methods related to soil-steel composite bridges and culverts only specify the minimum soil cover depth. This value is connected with the bridge span and shell height. In the case of static and dynamic loads (like passing vehicles), such approach seems to be quite reasonable. However, it is important to know how the soil cover depth affects the behaviour of soil-steel composite bridges under seismic excitation. This paper presents the results of a numerical study of soil-steel bridges with different soil cover depths (1.00, 2.00, 2.40, 3.00, 4.00, 5.00, 6.00 and 7.00 m) under seismic excitation. In addition, the same soil cover depths with different boundary conditions of the soil-steel bridge were analysed. The analysed bridge has two closed pipe-arches in its cross section. The load-carrying structure was constructed as two shells assembled from corrugated steel plate sheets, designed with a depth of 0.05 m, pitch of 0.15 m, and plate thickness of 0.003 m. The shell span is 4.40 m, and the shell height is 2.80 m. Numerical analysis was conducted using the DIANA programme based on the finite element method. A nonlinear model with El Centro records and the time history method was used to analyse the problem.

Examination on Required Cover Depth to Prevent Reinforcement Corrosion Risk in Concrete

  • Yoon, In-Seok
    • Corrosion Science and Technology
    • /
    • 제11권5호
    • /
    • pp.157-164
    • /
    • 2012
  • In first experiment series, this paper is devoted for examining progress of reinforcement corrosion due to carbonation in concrete and to quantify uncarbonation depth to protect reinforcement from corroding. The tolerance of cover depth should be considered in order to prevent carbonation-induced corrosion. From the relationship between the weight loss of reinforcement and corrosion current density for a given time, therefore, the tolerance of cover depth to prevent carbonation-induced corrosion is computed. It is observed that corrosion occurs when the distance between carbonation front and reinforcement surface (uncarbonated depth) is smaller than 5 mm.As a secondary purpose of this study, it is investigated to examine the interaction between carbonation and chloride penetration and their effects on concrete. This was examined experimentally under various boundary conditions. For concrete under the double condition, the risk of deterioration due to carbonation was not severe. However, it was found that the carbonation of concrete could significantly accelerate chloride penetration. As a result, chloride penetration in combination with carbonation is a serious cause of deterioration of concrete.

박스형 암거와 보강슬래브에 의한 줄눈 콘크리트 포장의 거동 (Behavior of Jointed Concrete Pavement by Box Culvert and Reinforced Slab)

  • 박주영;손덕수;이재훈;연우;정진훈
    • 한국도로학회논문집
    • /
    • 제14권6호
    • /
    • pp.25-35
    • /
    • 2012
  • PURPOSES : Hollows are easily made, and bearing capacity can be lowered near underground structures because sublayers of pavement settle for a long time due to difficult compaction at the position. If loadings are applied in this condition, distresses may occur in pavement and, as the result, its lifespan can decrease due to the stress larger than that expected in design phase. Although reinforced slab is installed on side of box culvert to minimize the distresses, length of the reinforced slab is fixed as 6m in Korea without any theoretical consideration. The purpose of this paper is investigating the behavior of concrete pavement according to the cover depth of the box culvert ad the length of the reinforced slab. METHODS : The distresses of concrete pavement slabs were investigated and cover depth was surveyed at position where the box culverts were located in expressways. The concrete pavements including the box culverts were modeled by finite element method and their behaviors according to the soil cover depth were analyzed. Wheel loading was applied after considering self weight of the pavement and temperature gradient of the concrete pavement slab at Yeojoo, Gyeonggi where a test road was located. After installing pavement joint at various positions, behavior of the pavement was analyzed by changing the soil cover depth and length of the reinforced slab. RESULTS : As the result, the tensile stress developed in the pavement slab according to the joint position, cover depth, and reinforced slab length was figured out. CONCLUSIONS : More reasonable and economic design of the concrete pavement including the box culvert is expected by the research results.

건설 현장 항타 하중에 의한 지중 삼중관 진동 거동 II. 매설 심도 (Dynamic Response of Underground Three-layered Pipeline Subjected to Pile Driving Loads : II. Cover Depth)

  • 유한규;원종화;최정현;김문겸
    • 한국가스학회지
    • /
    • 제15권4호
    • /
    • pp.15-20
    • /
    • 2011
  • 본 연구는 매설 조건이 불건전한 건설 현장에 매설된 삼중관이 항타 진동에 노출되었을 경우에 발생하는 배관의 거동을 매설 심도에 따라 분석하였다. 매설 배관으로부터 20m의 이격 거리를 갖는 항타 에너지는 7tonf의 램이 1.2m에서 낙하하였을 경우로 선정하였고, 매설 심도는 0.6, 1.4, 2.2, 3.0, 3.8m로 변화하여 연구를 진행하였다. 관의 길이방향 중심에서의 진동 속도와 응력을 확인 하였고, 감쇠비를 고려하여 삼중관의 거동을 분석하였다. 이격거리가 동일한 경우의 진동 속도에 대한 감쇠율은 매설 심도가 증가함에 따라 증가하는 추세를 보이고 있다. 또한, 내관에서 응력 감쇠율도 매설 심도가 증가함에 따라 증가하는 추세를 보이고 있다.