• Title/Summary/Keyword: Coupon Specimen

Search Result 12, Processing Time 0.018 seconds

Fluxless Bonding Method between Sn and In Bumps Using Ag Capping Layer (Ag층을 이용한 Sn과 In의 무 플럭스 접합)

  • Lee Seung-Hyun;Kim Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.23-28
    • /
    • 2004
  • We utilized Ag capping layer for fluxless bonding. To investigate the effect of Ag capping layer, two sets of sample were used. One set was bare In and Sn solders. The other set was In and Sn solders with Ag capping layer. In ($10{\mu}m$) and Sn ($10{\mu}m$) solders were deposited on Cu/Ti/Si substrate using thermal-evaporation, and Ag ($0.1{\mu}m$) capping layers were deposited on In and Sn solders. Solder joints were made by joining two In and Sn deposited specimens at $130^{\circ}C$ for 30 s under 0.8, 1.6, 3.2 MPa using thermal compression bonder. The contact resistance was measured using four-point probe method. The shear strength of the solder joints was measured by the shear test of cross-bar sample in the direction. The microstructure of the solder joints was characterized with SEM and EDS. In and Sn solders without Ag capping layers were only bonded at $130^{\circ}C$ under high bonding pressure. Also the shear strength of the In-Sn solder joints under was lower than that of the Ag/In-Ag/Sn solder joints. The resistance of the solder joints was $2-4\;m{\Omega}$ The solder joints consisted of In-rich phase and Sn-rich phase and the intermixed compounds were found at the interface. As bonding pressure increased, the intermixed compounds formed more.

  • PDF

Experimental Evaluation of Seismic Column Splice with Partial Joint Penetration Welds (부분용입용접 내진기둥 이음부의 강도평가)

  • Lee, Cheol Ho;Kim, Jae Hoon;Kim, Jung Jae;Oh, Sang Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.817-827
    • /
    • 2008
  • The seismic performance of a column splice fabricated with PJP (partial joint penetration) welds for special moment frames was experimentally evaluated in this study. The steel materials that were used for the specimens included SHN490 and SN490 steel, or the newly developed structural steel for seismic application. Fabricating the column splice with PJP welds is highly attractive from the perspective of reducing the welding cost and the construction time. PJP welds in column splices are viewed apprehensively, however, because several tests have shown that PJP welds in thick members tend to become brittle under tensile loads. The column splices in this testing program were designed for the expected plastic moment of the column that current seismic codes typically require. The design strength of partial-penetration welded joints was determined according to the 2005 AISC-LRFD Specification. Three-point loading was applied monotonically, using a universal testing machine, such thatthe column splice joints were subjected to pure tension. The test results showed that the PJP welded splices, if designed properly, can develop a strength exceeding that of the actual plastic moment of the column. The specimen made of the SM490 rolled section, however, showed a brittle fracture at the splice soon after achieving the actual plastic moment of the column. The tensile coupon test results also showed that the material properties of SM490 steel are more unpredictable. Overall, although the test data are limited, the SHN490 and SN490 steel specimens showed a superior and reliable performance.