• Title/Summary/Keyword: Coupling stiffness

Search Result 283, Processing Time 0.021 seconds

Seismic torsional vibration in elevated tanks

  • Dutta, Sekhar Chandra;Murty, C.V.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.615-636
    • /
    • 2000
  • Some elevated water tanks have failed due to torsional vibrations in past earthquakes. The overall axisymmetric structural geometry and mass distribution of such structures may leave only a small accidental eccentricity between centre of stiffness and centre of mass. Such a small accidental eccentricity is not expected to cause a torsional failure. This paper studies the possibility of amplified torsional behaviour of elevated water tanks due to such small accidental eccentricity in the elastic as well as inelastic range; using two simple idealized systems with two coupled lateral-torsional degrees of freedom. The systems are capable of retaining the characteristics of two extreme categories of water tanks namely, a) tanks on staging with less number of columns and panels and b) tanks on staging with large number of columns and panels. The study shows that the presence of a small eccentricity may lead to large displacement of the staging edge in the elastic range, if the torsional-to-lateral time period ratio $({\tau})$ of the elevated tanks lies within a critical range of 0.7< ${\tau}$ <1.25. Inelastic behaviour study reveals that such excessive displacement in some of the reinforced concrete staging elements may cause unsymmetric yielding. This may lead to progressive strength deterioration through successive yielding in same elements under cyclic loading during earthquakes. Such localized strength drop progressively develop large strength eccentricity resulting in large localized inelastic displacement and ductility demand, leading to failure. So, elevated water tanks should have ${\tau}$ outside the said critical range to avoid amplified torsional response. The tanks supported on staging with less number of columns and panels are found to have greater torsional vulnerability. Tanks located near faults seem to have torsional vulnerability for large ${\tau}$.

Constitutive Model for Unsaturated Soils Based on the Effective Stress (유효응력에 근거한 불포화토의 역학적 구성모델)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.55-69
    • /
    • 2011
  • The importance of unsaturated state in various geo-engineering problems has led to the advance of mechanical constitutive model emulating behavior of unsaturated soils in response to thermo-hydro-mechanical loading. Elasto-plastic mechanical constitutive model for unsaturated soil is formulated based on Bishop's effective stress. Effective stress and temperature are main variables in constitutive equation, and incremental formulation of constitutive relationship is derived to compute stress update and stiffness tensor. Numerical simulations involving coupled THM processes are conducted to discuss numerical stability and applicability of developed constitutive model: one-dimensional test, tri-axial compression test, and clay-buffering at high level radioactive waste disposal. Numerical results demonstrated that developed model can predict very complex behavior of coupled THM phenomena and is applicable to geo-engineering problems under various environmental conditions, as well as interpret typical behavior of unsaturated soils.

Nonlocal elasticity approach for free longitudinal vibration of circular truncated nanocones and method of determining the range of nonlocal small scale

  • Li, C.;Sui, S.H.;Chen, L.;Yao, L.Q.
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.279-286
    • /
    • 2018
  • The free longitudinal vibration of a circular truncated nanocone is investigated based on the nonlocal elasticity theory. Exact analytical formulations for tapered nanostructures are derived and the nonlinear differential governing equation of motion is developed. The nonlocal small scale effect unavailable in classical continuum theory is addressed to reveal the long-range interaction of atoms implicated in nonlocal constitutive relation. Unlike most previous studies applying the truncation method to the infinite higher-order differential equation, this paper aims to consider all higher-order terms to show the overall nonlocality. The explicit solution of nonlocal stress for longitudinal deformation is determined and it is an infinite series incorporating the classical stress derived in classical mechanics of materials and the infinite higher-order derivative of longitudinal displacement. Subsequently, the first three modes natural frequencies are calculated numerically and the significant effects of nonlocal small scale and vertex angle on natural frequencies are examined. The coupling phenomenon of natural frequency is observed and it is induced by the combined effects of nonlocal small scale and vertex angle. The critical value of nonlocal small scale is defined, and after that a new proposal for determining the range of nonlocal small scale is put forward since the principle of choosing the nonlocal small scale is still unclear at present. Additionally, two different types of nonlocal effects, namely the nonlocal stiffness weakening and strengthening, reversed phenomena existing in nanostructures are observed and verified. Hence the opposite nonlocal effects are resolved again clearly. The nano-engineers dealing with a circular truncated nanocone-based sensors and oscillators may benefit from the present work.

Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.139-160
    • /
    • 2015
  • The global performance of the 5MW OC4 semisubmersible floating wind turbine in random waves was numerically simulated by using the turbine-floater-mooring fully coupled and time-domain dynamic analysis program FAST-CHARM3D. There have been many papers regarding floating offshore wind turbines but the effects of second-order wave-body interactions on their global performance have rarely been studied. The second-order wave forces are actually small compared to the first-order wave forces, but its effect cannot be ignored when the natural frequencies of a floating system are outside the wave-frequency range. In the case of semi-submersible platform, second-order difference-frequency wave-diffraction forces and moments become important since surge/sway and pitch/roll natural frequencies are lower than those of typical incident waves. The computational effort related to the full second-order diffraction calculation is typically very heavy, so in many cases, the simplified approach called Newman's approximation or first-order-wave-force-only are used. However, it needs to be justified against more complete solutions with full QTF (quadratic transfer function), which is a main subject of the present study. The numerically simulated results for the 5MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model test results by Technip/NREL/UMaine. The predicted motions and mooring tensions for two white-noise input-wave spectra agree well against the measure values. In this paper, the numerical static-offset and free-decay tests are also conducted to verify the system stiffness, damping, and natural frequencies against the experimental results. They also agree well to verify that the dynamic system modeling is correct to the details. The performance of the simplified approaches instead of using the full QTF are also tested.

Analytical and experimental investigation of stepped piezoelectric energy harvester

  • Deepesh, Upadrashta;Li, Xiangyang;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.681-692
    • /
    • 2020
  • Conventional Piezoelectric Energy Harvesters (CPEH) have been extensively studied for maximizing their electrical output through material selection, geometric and structural optimization, and adoption of efficient interface circuits. In this paper, the performance of Stepped Piezoelectric Energy Harvester (SPEH) under harmonic base excitation is studied analytically, numerically and experimentally. The motivation is to compare the energy harvesting performance of CPEH and SPEHs with the same characteristics (resonant frequency). The results of this study challenge the notion of achieving higher voltage and power output through incorporation of geometric discontinuities such as step sections in the harvester beams. A CPEH consists of substrate material with a patch of piezoelectric material bonded over it and a tip mass at the free end to tune the resonant frequency. A SPEH is designed by introducing a step section near the root of substrate beam to induce higher dynamic strain for maximizing the electrical output. The incorporation of step section reduces the stiffness and consequently, a lower tip mass is used with SPEH to match the resonant frequency to that of CPEH. Moreover, the electromechanical coupling coefficient, forcing function and damping are significantly influenced because of the inclusion of step section, which consequently affects harvester's output. Three different configurations of SPEHs characterized by the same resonant frequency as that of CPEH are designed and analyzed using linear electromechanical model and their performances are compared. The variation of strain on the harvester beams is obtained using finite element analysis. The prototypes of CPEH and SPEHs are fabricated and experimentally tested. It is shown that the power output from SPEHs is lower than the CPEH. When the prototypes with resonant frequencies in the range of 56-56.5 Hz are tested at 1 m/s2, three SPEHs generate power output of 482 μW, 424 μW and 228 μW when compared with 674 μW from CPEH. It is concluded that the advantage of increasing dynamic strain using step section is negated by increase in damping and decrease in forcing function. However, SPEHs show slightly better performance in terms of specific power and thus making them suitable for practical scenarios where the ratio of power to system mass is critical.

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K.;Mukhopadhyay, T.;Roy, L.;Dey, S.
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.529-547
    • /
    • 2022
  • Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

Improved Modal Pushover Analysis of Multi-span Continuous Bridge Structures (다경간 연속 교량 구조물의 지진응답 평가를 위한 개선된 모드별 비탄성 정적 해석법에 관한 연구)

  • Kwak, Hyo-Gyoung;Hong, Seong Jin;Kim, Young Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.497-512
    • /
    • 2006
  • In this paper, a simple but effective analysis procedure to estimate seismic capacities of multi-span continuous bridge structures is proposed on the basis of modal pushover analysis considering all the dynamic modes of structure. Unlike previous studies, the proposed method eliminates the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio and an approximate elastic deformed shape. Moreover, in addition to these two introductions, the use of an appropriate distributed load {P} makes it possible to predict the dynamic responses for all kinds of bridge structures through a simpler analysis procedure. Finally, in order to establish the validity and applicability of the proposed method, correlation studies between rigorous nonlinear time history analysis and the proposed method are conducted for multi-span continuous bridges.

Extending torsional balance concept for one and two way asymmetric structures with viscous dampers

  • Amir Shahmohammadian;Mohammad Reza Mansoori;Mir Hamid Hosseini;Negar Lotfabadi Bidgoli
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.417-427
    • /
    • 2023
  • If the center of mass and center of stiffness or strength of a structure plan do not coincide, the structure is considered asymmetric. During an earthquake, in addition to lateral vibration, the structure experiences torsional vibration as well. Lateraltorsional coupling in asymmetric structures in the plan will increase lateral displacement at the ends of the structure plan and, as a result, uneven deformation demand in seismically resistant frames. The demand for displacement in resistant frames depends on the magnitude of transitional displacement to rotational displacement in the plan and the correlation between these two. With regard to the inability to eliminate the asymmetrical condition due to various reasons, such as architectural issues, this study has attempted to use supplemental viscous dampers to decrease the correlation between lateral and torsional acceleration or displacement in the plan. This results in an almost even demand for lateral deformation and acceleration of seismic resistant frames. On this basis, using the concept of Torsional Balance, adequate distribution of viscous dampers for the decrease of this correlation was determined by transferring the "Empirical Center of Balance" (ECB) to the geometrical center of the structure plan and thus obtaining an equal mean square value of displacement and acceleration of the plan edges. This study analyzed stiff and flexible torsional structures with one-way and two-way mass asymmetry in the Opensees software. By implementing the Particle Swarm Optimization (PSO) algorithm, the optimum formation of dampers for controlling lateral displacement and acceleration is determined. The results indicate that with the appropriate distribution of viscous dampers, not only does the lateral displacement and acceleration of structure edges decrease but the lateral displacement or acceleration of the structure edges also become equal. It is also observed that the optimized center of viscous dampers for control of displacement and acceleration of structure depends on the amount of mass eccentricity, the ratio of uncoupled torsional-to-lateral frequency, and the amount of supplemental damping ratio. Accordingly, distributions of viscous dampers in the structure plan are presented to control the structure's torsion based on the parameters mentioned.

Numerical Study on Freezing and Thawing Process in Modular Road System (모듈러 도로시스템의 동결-융해에 대한 수치해석적 연구)

  • Shin, Hosung;Kim, Jinwook;Lee, Jangguen;Kim, Dong-Gyou
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.49-62
    • /
    • 2017
  • In order to understand response of geo-structures to the freezing-thawing process in the ground, it is necessary to consider phase change of the pore water of the ground and also to understand soil interaction with structures. In this study, numerical analysis was carried out for freezing and thawing effect on the modular road system. Neumann's theoretical equation for freezing-thawing processes in porous media can be used to estimate frozen depth and heaving from basic soil properties and ground and surface temperature, but its application is limited to the case for the sediment with fully saturated condition and zero unfrozen water content. Numerical analysis of the modular road system was performed on various soil types and different ground water table as the varying freezing index. The amount of heaving in the silty soil was much larger than those in granite weathered soil or sandy soil, and lowering groundwater level reduced ground heaving induced by freezing. Numerical analysis for temperature history of the ground surface predicted residual heaving near the surface by the freeze-thaw process in silty soil. It ought to reduce stiffness and bearing capacity of the ground so that it will impair stability and serviceability of new road system. However, the amount of residual heaving was insignificant for the road system installed in weathered soil granite and sandy soil. Since modular road system is a pavement structure mounted on the supporting substructure unlike the prevalent road pavement system, strict criteria should be applied for uniform and differential settlement of the pavement system.