• Title/Summary/Keyword: Coupling of Rules

Search Result 22, Processing Time 0.024 seconds

Developing a Computer Program for the Design of Marine Diesel Engine Shafting (디이젤기관 추진축계 설계를 위한 전산프로그램 개발에 관한 연구)

  • 김영만;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.37-48
    • /
    • 1984
  • For the designing propulsion shafting of ship, shaft diameters are usually calculated according to the Society's rules and other scantlings such as a shaft length, coupling and taper parts, etc., are decided according to calculated diameters. And then, the torsional vibration, the lateral vibration and shaft alignment should be reviewed to check whether the resonance points of torsional or lateral vibration appear within the normal operating speed range and the shaft alignment is reasonable. If the results of calculations are unsatisfactory, this process should be repeated until the final condition is determined and the process of this work takes much time to carry out. To simplify the above tedious processes, authors have developed a computer program to fulfill the above design processes at once. This program takes aim at reducing the manual calculating work associated with the propulsion shafting of ship. To confirm the availability of developed computer program, several propulsion shaftings which are driven by diesel engines, have been analysed. The results calculated by authors developed computer program show comparatively good agreements with those of the actual propulsion shafting.

  • PDF

Modal transformation tools in structural dynamics and wind engineering

  • Solari, Giovanni;Carassale, Luigi
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.221-241
    • /
    • 2000
  • Structural dynamics usually applies modal transformation rules aimed at de-coupling and/or minimizing the equations of motion. Proper orthogonal decomposition provides mathematical and conceptual tools to define suitable transformed spaces where a multi-variate and/or multi-dimensional random process is represented as a linear combination of one-variate and one-dimensional uncorrelated processes. Double modal transformation is the joint application of modal analysis and proper orthogonal decomposition applied to the loading process. By adopting this method the structural response is expressed as a double series expansion in which structural and loading mode contributions are superimposed. The simultaneous use of the structural modal truncation, the loading modal truncation and the cross-modal orthogonality property leads to efficient solutions that take into account only a few structural and loading modes. In addition the physical mechanisms of the dynamic response are clarified and interpreted.

Development of Synchro-drive Mobile Robot Base with Endless Rotate Type Turret (무한회전 터릿을 갖는 동기식 이동로봇 베이스의 개발)

  • Kwon, Oh-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.123-129
    • /
    • 2005
  • As the robot industry changes from industrial robot into personal robot used in home, the concept also changes from the existing fixed manipulator into Mobile Manipulator of free move in the aspect of appliance. For personal robot with such features, the role of mobile system is very important technology that rules the roost of robot functions. Especially, it is necessary to develop moving mechanism for free move in a narrow environment with obstacles such as home. This study introduces 3-axis structure in order to develop synchronous method that has turret capable of endless revolution for practical use as well as semi-omnidirectional function, and suggests applicable method to solve the problem of mechanical coupling.

Multidimetional Uniform Semiclassical (WKB) Solutions for Nonseparable Problems (다차원 비분리계의 균일준고전적 해법)

  • Byung C. Eu
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.202-220
    • /
    • 1978
  • Uniform semiclassical (WKB) solutions are obtained for nonseparable systems without using a close coupling formalism and are given explicitly in terms of well known analytic functions for various physically interesting and realistic cases. They do not become singular at turning points or surfaces and when taken in their asymptotic forms, they reduce to the usual WKB solutions that could be obtained if the Stokes phenomenon was properly taken care of for solutions. In obtaining such uniform solutions, the Schroedinger equations for nonseparable systems are suitably "renormalized" to solvable "normal" forms through certain transformations. Ehrenfest's adiabatic principle plays an important guiding role for obtaining such "renormalized" uniform solutions for nonseparable systems. The eigenvalues of the Hamiltonian can be calculated from the extended Bohr-Sommerfeld quantization rules when appropriate classical trajectories are obtained. An application is made to many-electron systems and for one of the simplest examples to show the utility of the method the approximate wavefunction is calculated of the ground state helium atom.

  • PDF

Field Circuit Coupling Optimization Design of the Main Electromagnetic Parameters of Permanent Magnet Synchronous Motor

  • Zhou, Guang-Xu;Tang, Ren-Yuan;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.88-93
    • /
    • 2008
  • The electromagnetic parameters of a permanent magnet synchronous motor (PMSM) such as the open load permanent magnet flux, d axis reactance $X_d$, and q axis reactance $X_q$, are most essential to the performance analysis and optimization design of the motor. Based on the numerical analysis of the 3D electromagnetic field, the three electromagnetic parameters of permanent magnet synchronous motors with U form interior rotor structures are calculated by FEA. The rules of the leakage coefficient and reactance parameters changing with the air gap length, permanent magnet magnetism length, and isolation magnetic bridge dimensions in the rotor are given. The calculated values agree well with the measured values. The FEA results are integrated with the self compiled electromagnetic design program to optimize the prototype motor. The tested performances of the prototype motor prove that the method is suitable for the optimization of motor structure.

Comparative Analysis of Optimization Algorithms and the Effects of Coupling Hedging Rules in Reservoir Operations

  • Kim, Gi Joo;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.206-206
    • /
    • 2021
  • The necessity for appropriate management of water resources infrastructures such as reservoirs, levees, and dikes is increasing due to unexpected hydro-climate irregularities and rising water demands. To meet this need, past studies have focused on advancing theoretical optimization algorithms such as nonlinear programming, dynamic programming (DP), and genetic programming. Yet, the optimally derived theoretical solutions are limited to be directly implemented in making release decisions in the real-world systems for a variety of reasons. This study first aims to comparatively analyze the two prominent optimization methods, DP and evolutionary multi-objective direct policy search (EMODPS), under historical inflow series using K-fold cross validation. A total of six optimization models are formed each with a specific formulation. Then, one of the optimization models was coupled with the actual zone-based hedging rule that has been adopted in practice. The proposed methodology was applied to Boryeong Dam located in South Korea with conflicting objectives between supply and demand. As a result, the EMODPS models demonstrated a better performance than the DP models in terms of proximity to the ideal. Moreover, the incorporation of the real-world policy with the optimal solutions improved in all indices in terms of the supply side, while widening the range of the trade-off between frequency and magnitude measured in the sides of demand. The results from this study once again highlight the necessity of closing the gap between the theoretical solutions with the real-world implementable policies.

  • PDF

A Fuzzy Skyhook Algorithm Using Piecewise Linear Inverse Model

  • Cho Jeong-Mok;Yoo Bong-Soo;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.190-196
    • /
    • 2006
  • In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model has been constructed by using piecewise linear damping force model. In this paper, the fuzzy logic control based on heuristic knowledge is combined with the skyhook control. And it is simulated for a quarter car model. The acceleration of the sprung mass is included in the premise part of the fuzzy rules to reduce the vertical acceleration RMS value of the sprung mass. Then scaling factors and membership functions are tuned using genetic algorithm to obtain optimal performance.

Device Miniaturization using Butterfly Grating-Assisted MMI Couplers (나비형 격자구조 다중모드 간섭 결합기를 사용한 소자의 소형화)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • In this paper, a novel architecture for device miniaturization of multimode interference-based (MMI) couplers is proposed. The coupling length of $N{\times}N$ MMI couplers scales as the square of the MMI region width so that the use of these structures with large-N ports can require large chip size. To solve the design problem, the butterfly grating-assisted MMI couplers, that have smaller device dimensions than conventional MMI couplers, are discussed and evaluated. Numerical simulations and novel design rules for such structures derived through theoretical analysis are presented.

Interference Analysis Between Fixed Wireless System and Radar Operating in VHF/UHF Bands with Geographic Information (지리정보에 기반한 VHF/UHF 대역의 고정무선시스템과 레이더 간의 간섭분석)

  • Suh, Kyoung-Whoan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • By virtue of Rec. ITU-R P.1546 and geography information system, interference analysis for the fixed wireless system and radar has been presented based upon the frequency-distance rules with minimum coupling loss, and a comprehensive methodology for assessing interoperability between systems was examined in terms of received signal, protection ratio, frequency dependent rejection. Also to find the antenna gain from a discrimination angle, a useful S-I plane was introduced based on signal and interference vectors derived from the real map with geographic information. To show some computational results, geography information on the map was taken for the given area, and field strength and path profile were illustrated for the radar and fixed wireless system operating at 2.7 GHz, for convenience. In addition the interference effect of receiver was also checked as a function of radar beam direction including protection ratio and frequency dependent rejection. The developed interference analysis can be actually applied to evaluate interoperability for wireless systems in the VHF and UHF bands.

A Design of Context-Aware Middleware based on Web Services in Ubiquitous Environment (유비쿼터스 환경에서 웹 서비스에 기반한 상황 인식 미들웨어의 설계)

  • Song, Young-Rok;Woo, Yo-Seob
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.4
    • /
    • pp.225-232
    • /
    • 2009
  • Context-aware technologies for ubiquitous computing are necessary to study the representation of gathered context-information appropriately, the understanding of user's intention using context-information, and the offer of pertinent services for users. In this paper, we propose the WS-CAM(Web Services based Context-Aware Middleware) framework for context-aware computing. WS-CAM provides ample power of expression and inference mechanisms to various context-information using an ontology-based context model. We also consider that WS-CAM is the middleware-independent structure to adopt web services with characteristic of loosely coupling as a matter of communication of context-information. In this paper, we describe a scenario for lecture services based on the ubiquitous computing e e e e e e to verify the utilization of WS-CAM We also show an example of middleware-independent system expansion to display the merits of web-based services. WS-CAM for lecture services represented context-information itodomaits as OWL-based ontology model effectively, and we confirmed the information is inferred to high level context-information by user-defined rules. We also confirmed the context-information is transferred to application services middleware-independently using various web methods provided by web services.

  • PDF