• Title/Summary/Keyword: Coupling materials

Search Result 860, Processing Time 0.024 seconds

Magnetic properties of Mn54Al46C2.44/Sm2Fe17N3 and Mn54Al46C2.44/Fe65Co35 composites

  • Qian, Hui-Dong;Si, Ping-Zhan;Lim, Jung Tae;Kim, Jong-Woo;Park, Jihoon;Choi, Chul-Jin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1703-1707
    • /
    • 2018
  • Ferromagnetic ${\tau}-phase$ $Mn_{54}Al_{46}C_{2.44}$ particles were synthesized, and its composites with commercial $Sm_2Fe_{17}N_3$ and synthesized $Fe_{65}Co_{35}$ powders were fabricated. Smaller grain size than the single domain size of the $Mn_{54}Al_{46}C_{2.44}$ without obvious grain boundaries and secondary phases is the origin for the low intrinsic coercivity. It was confirmed that the magnetic properties of the $Mn_{54}Al_{46}C_{2.44}$ can be enhanced by magnetic exchange coupling with the hard magnetic $Sm_2Fe_{17}N_3$ and soft magnetic $Fe_{65}Co_{35}$. The high degrees of the exchange coupling were verified by calculating first derivative curves. Thermo-magnetic stabilities of the composites from 100 to 400 K were measured and compared. It was demonstrated that the $Mn_{54}Al_{46}C_{2.44}$ based composites containing $Sm_2Fe_{17}N_3$ and $Fe_{65}Co_{35}$ could be promising candidates for future permanent magnetic materials with the proper control of purity, magnetic properties, etc.

Efficient White Phosphorescent Organic Light-emitting Diodes for Solid-State Lighting Applications Using an Exciton-confining Emissive-Layer Structure

  • Lee, Jong-Hee;Lee, Jeong-Ik;Lee, Joo-Won;Lee, Jun-Yeob;Kang, Dong-Min;Yuanc, Wei;Kwon, Soon-Ki;Chu, Hye-Yong
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.92-95
    • /
    • 2009
  • Highly efficient blue and white phosphorescent organic light-emitting diodes (PHOLEDs) with an exciton-confining structure were investigated in this study. Effective charge confinement was achieved by stacking two emitting layers with different charge-transporting properties, and blue PHOLEDs with a maximum luminance efficiency of 47.9 lm/W were developed by using iridium(III) bis(4,6-(difluorophenyl) pyridinato-N,C2')picolinate (FIrpic) as an electrophosphorescent dopant. Moreover, when the optimized green and red emitting layers were sandwiched between the two stacked blue emitting layers, white PHOLEDs (WOLEDs) with peak external and luminance efficiencies of 19.0% coupling technique.and 54.0 lm/W, respectively, were obtained without the use of any out-coupling technique.