• Title/Summary/Keyword: Coupling components

Search Result 351, Processing Time 0.021 seconds

Assembly Sequence Determination from Design Data Using Voxelization (복셀화를 통한 디자인 데이타로부터의 조립순서 결정)

  • Lee, Changho;Cho, Hyunbo;Jung, Mooyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.90-101
    • /
    • 1996
  • Determination of assembly sequence of components is a key issue in assembly operation. Although a number of articles dealing with assembly sequence determination have appeared, an efficient and general methodology for complex products has yet to appear. The objective of this paper is to present the problems and models used to generate assembly sequence from design data. An essential idea of this research is to acquire a finite number of voxels from any complex geometric entity, such as 3D planar polygons, hollow spheres, cylinders. cones, tori, etc. In order to find a feasible assembly sequence, the following four steps are needed: (1) The components composing of an assembly product are identified and then the geometric entities of each component are extracted. (2) The geometric entities extracted in the first step are translated into a number of voxels. (3) All the mating or coupling relations between components are found by considering relations between voxels. (4) The components to be disassembled are determined using CCGs (Component Coupling Graph).

  • PDF

Identification of Business Component based on Independence Metric (독립척도 기반의 비즈니스 컴포넌트 식별)

  • Choi, Mi-Sook;Cho, Eun-Sook
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.625-634
    • /
    • 2004
  • When constructing a component based system, It is understood that identifying reusable and independent business components is of utmost importance. However, according to conventional component based developing methodologies, most of developers depend on their experience and/or intuition for identification of business components. Furthermore, there are no criteria to evaluate whether the identified business components are more independently defined or not. Therefore, we propose a component identification metrics to apply to component properties In order to complement the difficulties of identifying business components through developers' experience and/or intuition. The metrics defined are the criteria for identifying the business Components and/or for evaluating the Identified components. We propose both a cohesion metric, and a coupling metric, to which component properties are applied, wherein those properties can be understood by high cohesion in, and low coupling between, components. Moreover, we propose an independence metric that can evaluate the degree of independence for a particular component by ratio of the cohesion and coupling of components. The metrics that we propose are applied to case study which demonstrates the identification of more independent business components and the validity of our metrics.

Stable Haptic Display Based on Coupling Impedance for Internal and External Forces

  • Kawai, Masayuki;Yoshikawa, Tsuneo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.2-8
    • /
    • 2002
  • This paper discusses haptic display for grasping a virtual object by two fingers. Much research has been done on fundamental analysis for stability of haptic display. But it is difficult to apply the results immediately to grasping situations by two fingers, since the studies usually deal with a single device and a single object and the fingertip force in grasping situations has two components, internal and external components. The conventional methods, which specify the coupling impedance at each contact point separately, have no other alternative but to specify the impedance for the sum of the internal and external components. So even if only the impedance for the external force should be changed, the impedance for the internal force is also changed at the same time. In this paper, a new method, in which the coupling impedance is specified separately for the internal and external forces, is proposed and the stability of the proposed method is discussed using passivity analysis for 1 -DOF(Degree-Of-Freedom) system. Finally, some experiments are performed to study the effects of the proposed method.

Polarization Mode Coupling Constants in Solid-State Lasers

  • Park, Jong-Dae;Cho, Chang-Ho
    • The Journal of Natural Sciences
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2006
  • We have found that the polarization mode coupling between the orthogonally linearly polarized dual mode laser results from the anisotropy of dipole moments. Rate equation analysis demonstrated that high anisotropy in dipole moment components can give rise to law intrinsic mode coupling constants while isotropic dipole moment components give high intrinsic mode coupling constant. The populations at active ion sites are shown to self-organize the populations such that laser mode gain is constant adove threshold while the gain contributions from the each site adjust themselves with pump power.

  • PDF

Wind-induced responses of Beijing National Stadium

  • Yang, Q.S.;Tian, Y.J.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.239-252
    • /
    • 2011
  • The wind-induced mean, background and resonant responses of Beijing National Stadium are investigated in this paper. Based on the concepts of potential and kinetic energies, the mode participation factors for the background and the resonant components are presented and the dominant modes are identified. The coupling effect between different modes of the resonant response and the coupling effect between the background and resonant responses are analyzed. The coupling effects between the background and resonant components and between different modes are found all negligible. The mean response is approximately analogous to the peak responses induced by the fluctuating wind. The background responses are significant in the fluctuating responses and it is much larger than the resonant responses at the measurement locations.

A Coupling Metric for Design of Component (컴포넌트 설계를 위한 결합도 메트릭)

  • Choi Mi-Sook;Lee Jong-Seok;Song Haeng-Sook
    • The KIPS Transactions:PartD
    • /
    • v.12D no.4 s.100
    • /
    • pp.609-616
    • /
    • 2005
  • The component-based development methodology becomes famous as the reuse technology to improve the high productivity of software development. It is necessary component metrics for component-based systems, because the designed components should be measurable to improve the quality of the software. Therefore this paper propose a coupling metric for component design which is reflected in characteristics of component. This paper suggest a case study and comparative analysis result about conventional metrics to verify the accuracy of our coupling metric. The Uoposed coupling metric measure the quality of components accurately and satisfies necessary conditions of coupling metric suggested by Briand and others.

Study of Earthquake Resilient RC Shear Wall Structures

  • Jiang, Huanjun;Li, Shurong
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2021
  • A new type of earthquake resilient reinforced concrete (RC) shear wall structure, installed with replaceable coupling beams and replaceable corner components at the bottom of wall piers, is proposed in this study. At first, the mechanical behavior of replaceable components, such as combined dampers and replaceable corner component, is studied by cyclic loading tests on them. Then, cycling loading tests are conducted on one conventional coupled shear wall and one new type of coupled shear wall with replaceable components. The test results indicate that the damage of the new type of coupled shear wall concentrates on replaceable components and the left parts are well protected. Finally, a case study is introduced. The responses of one conventional frame-tube structure and one new type of structure installed with replaceable components under the wind and the earthquake are compared, which verify that the performance of new type of structure is much better than the conventional structure.

Coupling Metrics Including Indirect Dependency for Object-Oriented Systems (객체지향 시스템에서 간접 의존성을 포함한 결합도 메트릭)

  • Yoo, Moon Sung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.3
    • /
    • pp.37-42
    • /
    • 2011
  • Nowadays software developers are moving from conventional software process technologies to the object-oriented paradigm. To develope the object-oriented softwares efficiently, various software metrics have been suggested. Coupling refers to the degree of independence between components of the system. It has long been well known that good software practice calls for minimizing coupling interaction. Many researches have been studied coupling metrics of the object- oriented systems. We review Chidamber and Kemerer's work & Li's work. In this paper, we study the coupling of the overall structures of object-oriented systems by analyzing the class diagram of UML. We propose four coupling metrics for object-oriented softwares. First, we use an established coupling metric for object- oriented systems as a basic coupling metric. Then we modify the basic coupling metric by including indirect coupling between classes, We also suggest two relative coupling metrics to measure coupling between subsystems. We investigate the theoretical soundness of the proposed metrics by the axioms of Briand et al. Finally, we apply the presented metrics to a practical case study. This coupling metric will be helpful to the software developers for their designing tasks by evaluating the coupling metric of the structures of object-oriented system and redesigning tasks of the system.

Synthesis, Spectral Property and Dyeing Assessment of Azo Disperse Dyes Containing Carbonyl and Dicyanovinyl Groups

  • Choi, Yun Seok;Lee, Kun Su;Kim, Hye Jin;Choi, Jong Yun;Kang, Soon Bang;Lee, Eui Jae;Keum, Gyochang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.863-867
    • /
    • 2013
  • A series of azo disperse dyes having dicyanovinyl groups was synthesized by the Knoevenagel condensation with malononitrile from carbonyl substituted phenylazo disperse dyes which were prepared by conventional diazo coupling reaction of aniline derivatives as diazo components. A variety of coupling components such as anilines, an indole and a pyridone were used. The azo disperse dyes were evaluated for their spectral properties and dyeing assessment on the polyester fabrics. The azo disperse dyes containing dicyanovinyl groups showed bathochromic shifts and darker colors due to increased electron withdrawing strength in their azo components and extended conjugation by dicyanovinyl groups than their parent carbonyl substituted azo dyes. The dyes containing 2-acetylamino-5-methoxy substituent in the coupling component exhibited higher wavelength of maximum absorbance (${\lambda}_{max}$) and significant negative solvatochromism than those of other dyes due to intramolecular hydrogen bonding.

Thermal Analysis of High Density Permanent Magnet Synchronous Motor Based on Multi Physical Domain Coupling Simulation

  • Chen, ShiJun;Zhang, Qi;He, Biao;Huang, SuRong;Hui, Dou-Dou
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • In order to meet the thermal performance analysis accuracy requirements of high density permanent magnet synchronous motor (PMSM), a method of multi physical domain coupling thermal analysis based on control circuit, electromagnetic and thermal is presented. The circuit, electromagnetic, fluid, temperature and other physical domain are integrated and the temperature rise calculation method that considers the harmonic loss on the frequency conversion control as well as the loss non-uniformly distributed and directly mapped to the temperature field is closer to the actual situation. The key is to obtain the motor parameters, the realization of the vector control circuit and the accurate calculation and mapping of the loss. Taking a 48 slots 8 poles high density PMSM as an example, the temperature rise distribution of the key components is simulated, and the experimental platform is built. The temperature of the key components of the prototype machine is tested, which is in agreement with the simulation results. The validity and accuracy of the multi physical domain coupling thermal analysis method are verified.