• Title/Summary/Keyword: Coupling coefficient

Search Result 527, Processing Time 0.029 seconds

Comparison of Higher-Order Resonant Topologies for Contact-less Power Converter Systems (무접점 전력용 변환기의 다중공진형 토폴로지 비교)

  • Thenathayalan, Daniel;Park, Joung-Hu
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.323-324
    • /
    • 2014
  • A higher-order power converter topology for an extremely low coupling (less than 0.15) transformer with high efficiency and wide air-gap (23 mm) is presented in this paper. Among the typical resonant converter topologies for contact-less power transferring systems, Series-Series Resonant Converter (SSRC) and Series-Parallel Resonant Converter (SPRC) are widely used in number of power electronic applications. However, when coupling coefficient of a transformer is seriously low (k<0.5), the series-series resonant converter will possibly operate at short circuited condition because of the small magnetizing impedance. To solve this problem, a modified and improved topology of seventh-order resonant converter for contact-less power converter system is proposed and the results are presented.

  • PDF

Enhancement in Isolation among Collinearly Placed Microstrip Patch Antenna Arrays

  • Irfan Ali, Tunio;Hernan, Dellamaggiora;Umair, Saeed;Ayaz Ahmed, Hoshu;Ghulam, Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.120-124
    • /
    • 2023
  • Strong surface waves among collinearly arranged patch antenna arrays pose unwanted inter element coupling particularly when high permittivity dielectric materials are used. In order to avert those waves, a novel Defected Ground Structure (DGS) is carved out systematically between two E-plane patch antenna elements. The introduced low profile μ shaped structure consequently improves impedance bandwidth and reflection coefficient by suppressing surface waves considerably. Parametric simulation results are analyzed and discussed.

Wind-induced vibration characteristics and parametric analysis of large hyperbolic cooling towers with different feature sizes

  • Ke, Shitang;Ge, Yaojun;Zhao, Lin;Tamura, Yukio
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.891-908
    • /
    • 2015
  • For a systematic study on wind-induced vibration characteristics of large hyperbolic cooling towers with different feature sizes, the pressure measurement tests are finished on the rigid body models of three representative cooling towers with the height of 155 m, 177 m and 215 m respectively. Combining the refined frequency-domain algorithm of wind-induced responses, the wind-induced average response, resonant response, background response, coupling response and wind vibration coefficients of large cooling towers with different feature sizes are obtained. Based on the calculating results, the parametric analysis on wind-induced vibration of cooling towers is carried out, e.g. the feature sizes, damping ratio and the interference effect of surrounding buildings. The discussion shows that the increase of feature sizes makes wind-induced average response and fluctuating response larger correspondingly, and the proportion of resonant response also gradually increased, but it has little effect on the wind vibration coefficient. The increase of damping ratio makes resonant response and the wind vibration coefficient decreases obviously, which brings about no effect on average response and background response. The interference effect of surrounding buildings makes the fluctuating response and wind vibration coefficient increased significantly, furthermore, the increase ranges of resonant response is greater than background response.

13.56 MHz Wireless Power Transfer System Using Loop Antennas with Tunable Impedance Matching Circuit (가변 임피던스 정합 회로를 갖는 루프 안테나를 이용한 13.56 MHz 무선 전력 전송 시스템)

  • Won, Do-Hyun;Kim, Hee-Seung;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.519-527
    • /
    • 2010
  • In this paper, we proposed a 13.56 MHz wireless power transfer system using loop antennas with tunable impedance matching circuits. In general, a wireless power transfer system shows an impedance mismatching due to a reflected impedance, because a coupling coefficient is varied with respect to separation distance between two resonating antennas. The proposed system can compensate the effect of this impedance mismatch owing to tunable impedance matching circuits using varactor diodes. Therefore, transmission efficiency is enhanced, moreover, the center frequency of the system is not changed, regardless of separation distance between two antennas. In order to demonstrate the performance of the proposed system, a wireless power transfer system with tunable impedance matching circuits is designed and implemented, which has a pair of loop antennas with a dimension of $30\;cm{\times}30\;cm$ cm. The input return loss, coupling coefficient, efficiency, and input impedance variation with respect to a distance between loop antennas were measured. From measured results, the proposed system shows enhanced performances than the case of the general fixed $50\;{\Omega}$ impedance matching circuits. Therefore, we verified that the proposed wireless power transfer system using the proposed impedance matching scheme will be able to ensure robust operation even when the separation distance of antennas is varied.

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

A Study on the Physical Properties of Reinforcing Fillers with Dual Phase Structure (이중상 구조를 가진 보강성 충전제의 물리적 특성 연구)

  • Lee, Seag;Park, Nam Cook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.608-613
    • /
    • 1998
  • The purpose of this experiment was the physical properties of rubber compounds with DPCB and pure carbon black. Si-O peak in the silcia surface was observed at the range of wavenumber from 1,100 to 1,200 in the DPCB by FT-IR analysis. Cure rate of rubber compounds containing DPCB and organic silane coupling agent were (Si69) delayed compared with those containing pure carbon black. 300% modulus and interaction coefficient of DPCB with silane coupling agent were higher than those of pure carbon black and PICO weight loss amount showed constant value. It was found that $0^{\circ}C$ tan$\delta$ of rubber compounds with DPCB was larger than those of pure carbon black at 2.0% silane coupling agent based on 50 phr DPCB and $60^{\circ}C$ tan$\delta$ of rubber compounds with DPCB decreased as increasing the usage coupling agent. Consequently, it is postulated that DPCB is strong candidate material for lowering rolling resistance under constant abrasion resistance.

  • PDF

Kinetic Analysis of Oxidative Coupling of Methane over Na+/MgO Catalyst (Na+/MgO 촉매상에서 메탄의 Oxidative Coupling 반응의 속도론적 해석)

  • Seo, Ho-Joon;Sunwoo, Chang-Shin;Yu, Eui-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.580-587
    • /
    • 1994
  • The oxidative coupling of methane was studied kinetically using $Na^+(50wt%)/MgO$ catalyst at 710, 730, 750, 770 and $790^{\circ}C$ in a fixed bed flow reactor at the atmospheric pressure under differential conversion conditions. Through curve fitting, it was found that the Langmuir-Hinshelwood type mechanism was fitted to this reaction rather than Rideal-Redox type or Eley-Rideal type mechanism. Therefore, it was proposed that the $O_2{^-}$ or $O_2{^{2-}}$ species on the surface was related to the production of $CH_3{\cdot}$. The estimated activation energy of $CH_3{\cdot}$ production was about 39.3kcal/mol. Moreover, as the result of curve fitting, the stoichiometric coefficient of $O_2$ for the production of $CH_3{\cdot}$ to produce $CO_x$was approximately 1.5. Accordingly, it could be concluded that the $CH_3O_2{\cdot}*$ was prouduced through the partial oxidation of $CH_3{\cdot}$ with the surface oxygen.

  • PDF

Comparison analyzation of Calculation Equations for Shear strength of Steel Plate Coupling Beam (철골 플레이트 커플링보의 전단강도에 대한 기준식의 비교.분석)

  • Lee, Kyung-Hwun;Song, Han-Beom;Park, Jin-Young;Yi, Waon-Ho;Tae, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.129-132
    • /
    • 2008
  • Coupled shear wall system is the primary seismic load resisting system of buildings. The coupling beam of these buildings must exhibit excellent ductility and energy dissipation capacity. To achieve better ductility and energy dissipation, the steel coupling beam embedded in the reinforced concrete walls is proposed. Performance of the steel coupling beam is mainly effected by embedment length. ACI equation and BS equation were examined with 23 previous test results. The statistical study uses the values of mean value, standard deviation, correlation coefficient, normal distribution curve, and error analysis. Through the analytical program, the evaluation of the 2 equations was established.

  • PDF

Compact and Wideband Coupled-Line 3-dB Ring Hybrids (Coupled Line으로 구성된 작고 넓은 대역폭을 가지는 3-dB Ring Hybrids)

  • Ahn, Hee-Ran;Kim, Jung-Joon;Kim, Bum-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.862-877
    • /
    • 2008
  • In this paper, two types of wideband 3-dB ring hybrids are compared and discussed to show the ring hybrid with a set of coupled-line sections better. However, the better one still has a realization problem that perfect matching can be achieved only with -3 dB coupling power. To solve the problem, a set of coupled-line sections with two shorts is synthesized using one- and two-port equivalent circuits and design equations are derived to have perfect matching, regardless of the coupling power. Based on the design equations, a modified ${\Pi}-type$ of transmission-line equivalent circuit is newly suggested. It consists of coupled-line sections with two shorts and two open stubs and can be used to reduce a transmission-line section, especially when its electrical length is greater than ${\pi}$. Therefore, the $3\;{\lambda}/4$ transmission-line section of a conventional ring hybrid can be reduced to less than ${\pi}/2$. To verify the modified ${\Pi}-type$ of transmission- line equivalent circuit, two kinds of simulations are carried out; one is fixing the electrical length of the coupled-line sections and the other fixing its coupling coefficient. The simulation results show that the bandwidths of resulting small transmission lines are strongly dependent on the coupling power. Using modified and conventional ${\Pi}-types$ of transmission-line equivalent circuits, a small ring hybrid is built and named a compact wideband coupled-line ring hybrid, due to the fact that a set of coupled-line sections is included. One of compact ring hybrids is compared with a conventional ring hybrid and the compared results demonstrate that the bandwidth of a proposed compact ring hybrid is much wider, in spite of being more than three times smaller in size. To test the compact ring hybrids, a microstrip compact ring hybrid, whose total transmission-line length is $220^{\circ}$, is fabricated and measured. The measured power divisions($S_{21}$, $S_{41}$, $S_{23}$ and $S_{43}$) are -2.78 dB, -3.34 dB, -2.8 dB and -3.2 dB, respectively at a design center frequency of 2 GHz, matching and isolation less than -20 dB in more than 20 % fractional bandwidth.

Perform Analyses of the Deformable Mirror for Adaptive Optics (적응 광학계 변형 거울의 성능 해석)

  • 엄태경;이완술;이준호;윤성기
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.30-31
    • /
    • 2002
  • 하나의 구동기를 작동하여 거울을 변형시킬 때, 변형된 거울면의 형태를 영향 함수(influence function)라고 정의하며, 이러한 영향 함수를 이용하여 적응 광학계의 주요한 광학 요소인 변형 거울을 효과적으로 모형화하고 설계할 수 있다. 본 논문에서는 유한요소해석을 이용하여 계산된 변형 거울의 실제 영향 함수를 가우시안 함수(Gaussian function) 형태로 단순화하고, 추가로 구동기들 사이의 영향을 고려한 커플링 계수(coupling coefficient)를 도입하여, 주어진 구동기 배열에 대한 영향 함수를 결정하였다. (중략)

  • PDF