• Title/Summary/Keyword: Coupling analysis

Search Result 2,272, Processing Time 0.025 seconds

Dynamic Analysis of Spindle System with Magnetic Coupling(ll) (마그네틱 커플링을 장착한 축계의 동적해석(II))

  • Kim, S.G.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.107-113
    • /
    • 1995
  • Using the mathematical model of the torsional vibration in spindle system with magnetic coupling, which was proposed in the paper of dynamic analysis of spindle system with magnetic coupling(l), we derive the equations of the motion and the form of the derived equations represents Duffing equation. Numerical analyses are executed in many conditions, namely the various types in magnetic coupling, changes of the gap between driver and follower. To verify the results of the therorectical analyses, a precision dynamic drive system is manufactured and methods of the test to measure the torsional vibration of the spindle system with magnetic coupling are presented ad thests in various conditions are carried out.

  • PDF

A Theoretical Study on the Dynamic Characteristics of Damping Flexible Coupling(I) (유체감쇠 커플링의 동특성에 관한 이론적 연구(I))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 1994
  • The present works are the theoretical results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. It is established the analysis scheme of the multiple-leaf spring, to obtain the static coefficient of stiffness of the coupling. Also, the dynamic coefficient of stiffness and the damping coefficient of the coupling are indentified through the flow analysis for a induced flow of working fluid by the deflection of multiple-leaf springs. This paper dealt with damping contributions by the friction between each plate of the multiple-leaf spring. In this paper, it is found that the dynamic characteristics of the damping flexible coupling are strongly dependent on the stiffness and the number of the multiple-leaf spring, and also vary with the viscosity of working fluid and the vibration speed of the inner star.

  • PDF

Flip-Flap Valve-Type Breakaway Coupling through Reverse Engineering (역설계를 통한 Flip-Flap 밸브형 분리식 커플링에 관한 연구)

  • Ahn, Hee-Hak;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.16-22
    • /
    • 2016
  • This study is a structural analysis of 3" Cryogenic Safety Breakaway Coupling using a manufactured product from KLAW Company. Breakaway coupling is very important in the pipe system, especially when transporting fuel or gas in the pipeline. For the analysis of the patent infringement target, Dover and KLAW Company's technologies (US 08127785, EP 0764809) were analyzed. Finally, the flip-flap valve overlap was measured after combining the breakaway coupling through 3D modeling, and the valve overlap had a 0.7mm measurement value from the height gauge. The safety breakaway coupling consisted of a total of 62 pieces (body: 42, valve module: 21).

Development of Noise Analysis Program by using Power Flow Analysis in Medium-to-high Frequency Ranges (파워흐름해석법을 이용한 중고주파수 대역 소음해석 프로그램 개발)

  • Kwon, Hyun-Wung;Song, Jee-Hun;Hong, Suk-Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.384-390
    • /
    • 2012
  • Power Flow Analysis (PFA) is introduced for solving the noise and vibration analysis of structures in medium-to-high frequency ranges. The vibration analysis software, $PFADS_{C{+}{+}}$ R4 based on Power Flow Finite Element Method (PFFEM) and the noise prediction software, $NASPFA_{C{+}{+}}$ R1 based on Power Flow Boundary Element Method (PFBEM) are developed. In this paper, the coupling equation which represents relation between structural energy and acoustic energy is developed for vibro-acoustic coupling analysis. And vibro-acoustic coupling analysis software based on PFA and coupling equation is developed. Developed software is composed of translator, cavity-finder, solver and post-processor over all. Translator can translate FE model into PFADS FE model and cavity-finder can automatically make NASPFA BE model from PFADS FE model for noise analysis. The solver module calculates the structural energy density, intensity of structures, the fictitious source on the boundary and the acoustic energy density at the field in acoustic cavities. Some applications of vibro-acoustic coupling analysis software to various structures and cruise ship are shown with reliable results.

A Curvic-Coupling Development for the Turbopump Application (터보펌프용 커빅커플링의 개발)

  • Jeong, Eun-Hwan;Yoon, Suk-Hwan;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.22-25
    • /
    • 2009
  • Development of a curvic-coupling was presented in this paper. The research covers design, structural analysis, hot-temperature-torsion-test, curvic-coupling applied proto-type turbine disk manufacturing, and assembly test of a curvic-coupling rotor system for the turbopump application. Curvic-coupling was designed based on the Gleason-standard-tooth shape. The load capability of the designed curvic coupling was validated by the structural analysis and hot-temperature-torsion-test. A proto-type turbine disk which had adopted designed curvic-coupling was manufactured, assembled and tested to reveal that shaft-disk assembly run-outs in axial and radial directions were much smaller than the design requirements. The development will be finalized after spin test of shaft-disk assembly in near future.

  • PDF

Extraction Solution for the Coupling Coefficient at the Magnetically Coupled Wireless Power Transmission (자계 결합 무선 전력 전송에서의 결합 계수 추출 방법)

  • Kim, Gun-Young;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1073-1078
    • /
    • 2012
  • This paper presented the extraction solution for the coupling coefficient at the magnetically coupled wireless power transmission(WPT) system through the analysis of its equivalent circuit considering the loss. The conventional extraction solution using coupled mode theory is generalized employing the extracted solution considering the load resistance. Consequently, the measuring process of extracting coupling coefficient becomes convenient since the even/odd mode analysis is not necessary. Furthermore, the coupling coefficient obtained from the induced extraction method was in excellent agreement with the coupling coefficient obtained using the ratio of magnetic flux passing through the two loops. The extraction of the accurate coupling coefficient at the magnetically coupled WPT is an essential work to analyze and optimize the WPT system.

Strength Demand of Hysteretic Energy Dissipating Devices Alternative to Coupling Beams in High-Rise Buildings

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.107-120
    • /
    • 2014
  • A Reinforced concrete (RC) shear wall system with coupling beams has been known as one of the most promising structural systems for high-rise buildings. However, significantly large flexural and/or shear stress demands induced in the coupling beams require special reinforcement details to avoid their undesirable brittle failure. In order to solve this problem, one of promising candidates is frictional hysteretic energy dissipating devices (HEDDs) as an alternative to the coupling beams. The introduction of frictional HEDDs into a RC shear wall system increases energy dissipation capacity and maintains the frame action after their yielding. This paper investigates the strength demands (specifically yield strength levels) with a maximum allowable ductility of frictional HEDDs based on comparative non-linear time-history analyses of a prototype RC shear wall system with traditional RC coupling beams and frictional HEDDs. Analysis results show that the RC shear wall systems coupled by frictional HEDDs with more than 50% yield strength of the RC coupling beams present better seismic performance compared to the RC shear wall systems with traditional RC coupling beams. This is due to the increased seismic energy dissipation capacity of the frictional HEDD. Also, it is found from the analysis results that the maximum allowable ductility demand of a frictional HEDD should increase as its yield strength decreases.

A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Cho, Hui-Je;Kim, Hyung-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.652-669
    • /
    • 2014
  • This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI) method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

Sliding Mode Analysis Using Substructure Synthesis Method (부구조물 합성법을 이용한 슬라이딩 모드 해석)

  • Kim, Dae-Kwan;Lee, Min-Su;Han, Jae-Hung;Ko, Tae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1366-1371
    • /
    • 2006
  • A structural coupling method is developed for the dynamic analysis of a nonlinear structure with concentrated nonlinear hinge joints or sliding lines. Component mode synthesis method is extended to couple substructures and the nonlinear models. In order to verify the improved coupling method, a numerical plate model consisting of two substructures and torsional springs, is synthesized by using the proposed method and its model parameters are compared with analysis data. Then the coupling method is applied to a three-substructure-model with the nonlinearity of sliding lines between the substructures. The coupled structural model is verified from its dynamic analysis. The analysis results show that the improved coupling method is adequate for the structural nonlinear analyses with the nonlinear hinge and sliding mode condition.

  • PDF

A Highly Efficient Method of Light Coupling into Optical Fiber with a Tapered Microlens (Tapered Lens를 사용한 Light Source와 Optical Fiber의 고효율 Coupling)

  • 이상호;강민호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.4
    • /
    • pp.22-26
    • /
    • 1979
  • Microlenses with an extremely small radius of curvature are efficiently use d to couple LED/laser diode light into optica1 fiber. We propose a Tapered lens for the highly efficient coupling of the optical fiber communication light souses into the fiber. Ray optical analysis shows that the maximum coupling efficiency is as high as 90 %, Tapered lens with optimum parameters are fabricated by using heating and pulling technique. Experiment shows that this new technique improves the coupling efficiency by two and four times for LED and laser diode, respectively, as compared with the simple flat - end coupling.

  • PDF