Software refactoring is a process to restructure an existing software code while keeping its external behavior the same. Currently, various refactoring techniques are being used to develop more readable and less complex codes by improving the non-functional attributes of software. Refactoring can further improve code maintainability by applying various techniques to the source code, which in turn preserves the behavior of code. Refactoring facilitates bug removal and extends the capabilities of the program. In this paper, an exhaustive review is conducted regarding bad smells present in source code, applications of specific refactoring methods to remove that bad smell and its effect on software quality. A total of 68 studies belonging to 32 journals, 31 conferences, and 5 other sources that were published between the years 2001 and 2019 were shortlisted. The studies were analyzed based on of bad smells identified, refactoring techniques used, and their effects on software metrics. We found that "long method", "feature envy", and "data class" bad smells were identified or corrected in the majority of studies. "Feature envy" smell was detected in 36.66% of the total shortlisted studies. Extract class refactoring approach was used in 38.77% of the total studies, followed by the move method and extract method techniques that were used in 34.69% and 30.61% of the total studies, respectively. The effects of refactoring on complexity and coupling metrics of software were also analyzed in the majority of studies, i.e., 29 studies each. Interestingly, the majority of selected studies (41%) used large open source datasets written in Java language instead of proprietary software. At the end, this study provides future guidelines for conducting research in the field of code refactoring.
In this paper, we present a trellis-based blind channel estimation and equalization technique coupling two kinds of adaptive Viterbi algorithms. First, the initial blind channel estimation is accomplished by incorporating the list parallel Viterbi algorithm with the least mean square (LMS) updating approach. In this operation, multiple trellis mappings are preserved simultaneously and ranked in terms of path metrics. Equivalently, multiple channel estimates are maintained and updated once a single symbol is received. Second, the best channel estimate from the above operation will be adopted to set up the whole trellis. The conventional adaptive Viterbi algorithm is then applied to detect the signal and further update the channel estimate alternately. A small delay is introduced for the symbol detection and the decision feedback to smooth the noise impact. An automatic switch between the above two operations is also proposed by exploiting the evolution of path metrics and the linear constraint inherent in the trellis mapping. Simulation has shown an overall excellent performance of the proposed scheme in terms of mean square error (MSE) for channel estimation, robustness to the initial channel guess, computational complexity, and channel equalization.
현대 소프트웨어의 규모는 커지고 있다. 이에 따라 고품질 코드를 위한 정적 분석의 중요성이 커지고 있다. 코드에 대한 정적 분석을 통해 결함과 복잡도를 식별하는 것이 필요하다. 이를 가시화하여 개발자 및 이해 관계자가 알기 쉽게 가이드도 필요하다. 기존 코드 가시화 연구들은 정적 분석의 코드 내부 정보들을 데이터베이스 테이블에 저장하여 및 품질 지표(CK Metrics, Coupling, Number of function calls, Bed smell)에 대한 계산을 질의어화 하고 추출된 정보를 가시화하는 과정을 구현하는 것에만 초점을 두었다. 이러한 연구들은 방대한 코드로부터 추출한 정보를 이용하여 코드를 분석할 때 많은 시간과 자원이 소모된다는 한계점이 있다. 또한 각 코드 내 정보 테이블들이 정규화되지 않았기 때문에 코드 내부의 정보(클래스, 함수, 속성 등)들에 대한 테이블 조인 연산 시 메모리 공간과 시간 소비가 발생할 수 있다. 이러한 문제들을 해결하기 위해, 데이터베이스 테이블의 정규화된 설계와 이를 통한 코드 내부의 품질 메트릭 지표에 대한 추출 및 가시화 메커니즘 제안한다. 이러한 메커니즘을 통해 코드 가시화 공정이 최적화되고, 개발자가 리팩토링해야 할 모듈을 가이드 할 수 있을 것으로 기대한다. 앞으로는 부분 학습도 시도할 예정이다.
객체지향 시스템의 복잡성 척도에 대하여 많은 연구와 검증이 이루어져 왔다. 대부분의 척도들은 시스템의 부분적 측면 예를 들어, 객체 간 결합도, 상속 구조의 복잡도, 메소드의 응집도 등에 대한 측정을 목표로 하고 있다. 그런데 소프트웨어 실무자들은 부분적이 아닌 시스템의 전반적인 복잡도를 측정할 수 있기를 바라고 있다. 본 논문은 UML의 클래스 다이어그램을 분석함으로써 객체지향 시스템의 전체적 구조에 대한 복잡도를 연구한 것이다. 클래스 다이어그램은 클래스와 클래스 간 관계로 구성되어 있다. 관계에는 연관 관계, 일반화 관계, 집합 관계 등 세 가지가 있는데 이 관계들이 객체지향 시스템의 구조를 이해하기 어렵게 하고 있다. 본 연구에서는 이 세 가지 관계를 통합하여 객체지향 시스템의 복잡도를 측정하는 경험적 척도를 제안하고 있다. 이 척도는 소프트웨어 개발자가 코딩하기 전에 객체지향 시스템의 복잡도를 평가해 보고 필요시 설계를 수정할 수 있도록 하게 함으로써 설계 업무에 많은 도움을 줄 것이다.
소프트웨어가 복잡해지고 대형화됨에 따라 다양한 소프트웨어 측정 개발에 필요한 비용이 점차 증가하게 되었지만 지금까지 시도된 측정 기법은 정형화되어 있지 않고 다양한 측정 메트릭을 통해 소프트웨어를 측정한다고 해도 측정 결과의 비교와 분석을 통해 수치적 해석 데이터를 얻기가 어려웠다. 따라서 본 논문에서는 사용자의 사용 사례를 통해 패턴을 추출하고 이를 통해 실험 데이터를 만들어 실제 소프트웨어가 동작하는 도중 내부 모듈간의 동적인 관계를 측정할 수 있는 시스템을 제안하였다.
소프트웨어 품질 측정은 소프트웨어 공학의 필수적인 요소이다. 소프트웨어 품질 척도 중 하나인 결합도는 모듈간의 얼마나 강하게 연결되어있는지를 나타낸다. 결합도는 소프트웨어의 결함-경향성, 모듈화, 재사용성, 변경-경향성 등 다양한 목적으로 사용된다. 기존의 결합도 척도들은 메소드호출 횟수에 의해서 결정되는데, 이는 메소드의 가중치를 고려하지 않기 때문에 결합도를 정확히 측정 하지 못한다. 본 논문은 페이지랭크 알고리즘을 이용하여 메소드의 가중치를 측정하고, 이를 이용한 결합도 척도 개선 방법에 대해 제안한다. 본 논문의 유효성을 검증하기 위하여, 4 개의 오픈 소스 프로젝트를 대상으로 기존의 방법과 개선된 방법으로 결합도 척도 3 개를 측정하였다. 개선된 결합도 3 개는 유지보수의 척도로 사용되는 변경-경향성(Change-Proneness)과의 상관계수가 기존의 결합도 척도에 비하여 눈의 띄게 향상되었다. 따라서 개선된 결합도 척도는 소프트웨어 품질을 더 정확하게 측정할 수 있다.
고품질 코드를 위한 정적 분석은 아직도 매우 필요한 영역이며, 또한 코드의 가시화는 개발자들에게 코드의 복잡한 모듈에 대한 가이드에 필요하다. 기존의 코드 가시화는 정적 분석의 코드 내부 정보들을 DB 테이블화 및 품질 지표(CK Metrics, Coupling, # function Calls, Bed smell) 질의어화, 그리고 추출된 정보를 가시화하는 것에만 초점을 두었다. 문제는 코드 내부 정보(Class, method, parameters, etc) 테이블들에 대한 join 연산 시 엄청난 시간과 리소스가 소모된다. 이 문제를 해결하기 위해, 우리는 테이블 설계의 정규화를 제안한다. 또한 필요한 품질 지표의 질의를 통해 코드 내부 정보 추출하여 데이터 및 제어 복잡 모듈을 식별하여 refactoring 를 가이드 한다. 앞으로는 이 부분의 AI learning 을 통해 bad/good program 을 식별을 기대한다.
소프트웨어 시장 규모가 확대되면서 다양한 요구사항을 만족시키는 대규모 소프트웨어가 개발되고 있다. 이로 인해 소프트웨어 복잡도가 증가하게 되고 품질 관리는 어려워졌다. 특히, 레거시 시스템의 개선 및 새로운 시스템 개발 환경에서 재사용은 중요하다. 이 논문에서는 품질을 인증 받은 모듈을 재사용하는 방법을 제안한다. 재사용 적용 레벨은 코드 영역(메소드, 클래스, 컴포넌트), 프로젝트 도메인, 비즈니스로 나누어진다. 이 논문에서는 소프트웨어 복잡성을 측정하는 결합도와 응집도 기반의 재사용 메트릭과 메소드와 클래스 레벨에 따라 "재사용에 적합한 모듈 덩어리"를 시각화하는 재사용 적합 모듈 추출 메카니즘을 제안한다. 레거시 프로젝트에 역공학 기법을 적용하여 어떤 모듈/객체/덩어리가 재사용할 수 있는 지를 식별하고 확장 시스템을 개발하거나 유사한 새로운 시스템을 개발하기 위해 재사용한다면 소프트웨어의 신뢰성을 보장하고 소프트웨어 개발 단계에서 필요한 시간과 비용을 절감시킬 수 있다.
최근 주목받고 있는 마이크로서비스는 독립적으로 개발될 뿐만 아니라 독립적으로 실행 및 배포가 가능하다는 장점 때문에, 클라우드 컴퓨팅 환경에서 보다 유연한 확장과 효율적인 협력을 보장할 수 있다. 이러한 영향으로 최근 마이크로서비스지향 애플리케이션 환경으로의 전환이 급격히 증가하고 있다. 마이크로서비스의 도입을 위해서는 무엇보다 모노리식 아키텍처로 구축된 단일 애플리케이션의 구성요소를 마이크로서비스 단위로 식별하는 문제가 선결되어야 한다. 본 논문에서는 레거시 시스템으로부터 마이크로서비스 식별의 문제를 알고리즘 기반으로 해결하기 이한 접근방법을 제안한다. 코드의 메타정보를 이용하여 그래프를 생성하고 클러스터링 알고리즘을 적용하여 마이크로서비스 후보를 추출한다. 추출된 마이크로서비스 후보에 대해 메트릭을 이용하여, 모듈화 품질을 평가한다. 또한 제안된 식별 방법의 효과를 검증하기 위해 벤치마크를 위해 많이 사용되는 공개 소프트웨어의 코드를 이용하여 후보 서비스를 도출하고, 메트릭을 이용하여 모듈화 수준을 평가한다. 결과적으로 좀더 작은 단위의 마이크로서비스로 식별해 내면서 모듈품질을 향상시키는 결과를 확인할 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권6호
/
pp.1973-1993
/
2022
Model-driven engineering (MDE) and aspect-oriented software development (AOSD) contribute to the common goal of development of high-quality code in reduced time. To complement each approach with the benefits of the other, various methods of integration of the two approaches were proposed in the past. Aspect-oriented code generation, which targets obtaining aspect-oriented code directly from aspect models, offers some unique advantages over the other integration approaches. However, the existing aspect-oriented code generation approaches do not comprehensively address all aspects of a model-driven code generation system, such as a textual representation of graphical models, conceptual mapping, and incorporation of behavioral diagrams. These problems limit the worth of generated code, especially in practical use. Here, we propose AJFCode, an approach for aspect-oriented model-driven code generation, which comprehensively addresses the various aspects including the graphical models and their text-based representation, mapping between visual model elements and code, and the behavioral code generation. Experiments are conducted to compare the maintainability and reusability characteristics of the aspect-oriented code generated using the AJFCode with the most comprehensive object-oriented code generation approach. AJFCode performs well in terms of all metrics related to maintainability and reusability of code. However, the most significant improvement is noticed in the separation of concerns, coupling, and cohesion. For instance, AJFCode yields significant improvement in concern diffusion over operations (19 vs 51), coupling between components (0 vs 6), and lack of cohesion in operations (5 vs 9) for one of the experimented concerns.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.