• 제목/요약/키워드: Coupling Loss

검색결과 588건 처리시간 0.036초

SEA에 기초를 둔 손실계수를 이용한 결합계수의 평가 (Coupling loss factor evaluation using loss factor based on the SEA)

  • 안병하;황선웅;김영종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.568-571
    • /
    • 1997
  • The overall aim of this paper is to determine coupling loss factor using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one directional power flow between two sub structures. Using these conditions, it is possible to find the coupling loss factor equation. The comparison between theory of power transmission on conjunction and above equation, show a good agreement in simple beam structure. To check the effectiveness of above equation, it was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

SEA를 이용한 셸과 실린더의 최적 용접 조건 (Optimum Welding Position between Shell and Cylinder based on SEA)

  • 이장우;양보석;안병하
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.370-376
    • /
    • 2004
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it ispossible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way (uni-directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two-stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure

SEA를 이용한 쉘과 실린더의 최적 용접 조건에 관한 연구 (Study on Optimum Welding Position between Shell and Cylinder based on SEA.)

  • 안병하;이장우;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.969-972
    • /
    • 2003
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way(nl- directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding Point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure

  • PDF

해석적인 방법과 수치적인 방법에 의한 고온초전도테이프의 결합손실 계산 (Calculation of Coupling Loss in a HTS Tape by using Analytic Method and Numerical Method)

  • 심정욱;이희준;차귀수;이지광;한송엽
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권6호
    • /
    • pp.309-315
    • /
    • 1999
  • Coupling loss is generated by the time-varying external magnetic field in the normal matrix of the multi-filamentary HTS tape. This paper calculates the coupling loss in the HTS tape. Analytic calculation of the coupling loss cannot consider the effect of the different shapes and the arrangement of the filaments. Numerical calculation by using finite element method and analytic calculation of the coupling loss have been done in this paper and results of two calculations have been compared. Transverse magnetic field and longitudinal magnetic field were considered as the external field.

  • PDF

KSTAR PF 초전도자석의 크기 및 재료에 따른 결합손실 특성 분석 (Analysis of Coupling Loss with Size and Material in the KSTAR PF Superconducting Coils)

  • 이현정;추용;이상일;박영민;박현택;오영국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.1-5
    • /
    • 2009
  • It is important to predict AC loss in $Nb_3Sn$ and NbTi cable-in-conduit-conductor (CICC) reliably for the design and operation of large superconducting coils. The hysteresis loss in the superconducting filaments and coupling loss within strands and among strands in a cable or composite are dominant ac losses in superconducting magnets. The coupling loss in a superconductor can be characterized by identifying the coupling constant time $n{\tau}$. To reduce the coupling loss, all the strands (superconductor and Cu) in KSTAR (Korea Superconducting Tokamak Advance Research) are chromium plated with thickness of $l{\pm}0.5{\mu}m$. The ac losses of PF1, PF5 and PF6 coils has been measured by calorimetric method while applying trapezoidal current pulses with various ramp rate from 0.5 kA/s to 2 kA/s. The coupling time constants for $Nb_3Sn$ coils are $25{\sim}55$ ms and the values are not co-related with the coil size, the time constants for NbTi coil is 30 ms.

SEA 를 이용한 쉘과 실린더의 최적 용접 조건 (Optimum Welding Position between Shell and Cylinder based on SEA)

  • 안병하;이장우;전시문;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.258-264
    • /
    • 2012
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represents characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way (uni-directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two-stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

다심 초전도 선재의 결합손실 해석 (COUPLING LOSS ANALYSIS OF SUPERCONDUCTING WIRE)

  • 이지광;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.119-121
    • /
    • 1991
  • Multifilamentary superconducting wires exposed to an alternating field generate the coupling loss and hysteresis loss. The geometric shapes of multifilamentary superconducting wire are very complicate, and loss generating mechanism is too. In this paper, coupling loss of superconducting wire in case of twelve filament is calculated by two dimensional numerical analysis, and compared with value of conventional formulus. The basic idea of this calculating method is potential difference of external transverse field.

  • PDF

교류용 초전도선의 결합손실해석 (Numerical Analysis of The Coupling Loss in AC Superconducting Wires)

  • 심정욱;차귀수;이지광;최경달;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.291-293
    • /
    • 1997
  • The external magnetic field which is applied to the superconducting wire generates coupling loss. Analytical method has been used for the calculation of the coupling loss. This paper calculates the coupling loss that is generated in the matrix by the external magnetic field. Two-dimensional Finite Element Method has been used for the calculation.

  • PDF

접수 구조물의 연성손실계수 변화에 관한 연구 (A Study on the Characteristics of Coupling Loss factor Associated with Fluid Loading)

  • 류정수
    • 한국음향학회지
    • /
    • 제19권6호
    • /
    • pp.17-22
    • /
    • 2000
  • 항공기나 선박과 같은 복잡한 구조물의 광대역 진동, 소음 예측을 위해 통계에너지해석법(SEA)이 널리 이용되고 있다. SEA를 이용해 접수 구조물의 진동, 소음을 정확히 해석하기 위해서는 접수에 의한 각 파라메터의 변화를 알아야만 한다. 본 연구에서는 기본 결합 요소인 'L'형과 'T'형 선결합 구조물에서 접수를 고려한 연성손실계수를 해석하고 공기중 진동시의 해석 결과와 비교하였다. 또한 'L'형, 'T'형 선결합을 가지는 단순한 형상의 steel box가 수중에서 진동하는 경우에, 접수에 의한 연성손실계수 변화가 세부시스템의 진동에 미치는 영향을 살펴보았다. 이를 통해, 구조물이 접수될 때 발생하는 연성손실계수의 변화를 확인하였으며, SEA를 이용한 접수 구조물의 진동 및 소음 해석시 결과의 신뢰성을 높이기 위해서는 접수에 의한 모드밀도, 내부손실계수 변화와 더불어 접수에 의한 연성손실계수 변화를 반드시 고려하여야 함을 확인하였다.

  • PDF

구조물 연결부의 질량부과 효과 : SEA실험 및 해석 결과 비교 (Added Mass Effect on Structural Junction: Comparison of SEA Experimental Results with Analysis)

  • 김관주;김정태;윤태중;박봉현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.359-364
    • /
    • 2002
  • Statistical energy method is widely used for the prediction of vibrational and acoustical behavior of complex structures, such as ship building and automobile in mid-, high frequency ranges. However. in order to convince this SEA result, it is important to verify estimated SEA parameters, e. g. modal density, energy in each subsystem, damping loss factor, coupling loss factor. with possible other method. For modal density parameter, the experimental estimations via Experimental Modal Analysis are checked with those from finite element method for both beam- plate and plate-plate cans. Loss factors are calculated by Lyon's simple method for the two subsystem. finally. modal experiments are carried out by varying the mass added on the junction of two subsystem for the purpose of investigating the influence on the coupling loss factor's behavior.

  • PDF