• 제목/요약/키워드: Coupled-test

검색결과 832건 처리시간 0.026초

위성 발사체 페어링 내부음향 해석 (Acoustic Analysis in the Payload Fairing of Launch Vehicle)

  • 서상현;박순홍;정호경;장영순
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1146-1151
    • /
    • 2011
  • Acoustic load from rocket propulsion system is main source of random vibration working on the payload. To protect payload from this acoustic load, additional APS(acoustic protection system) is generally applied. Noise reduction capacity of APS can be verified through acoustic test and vibro-acoustic coupled analysis. This paper compared the results of acoustic test and vibro-acoustic coupled analysis about KSLV-I payload fairing with APS.

KSR-III Rocket 종합 시험 설비에서 발생한 열-음향 불안정 현상에 관한 연구 (A study of acoustic coupled instability at the propulsion test facility for KSR-III rocket)

  • 조상연;강선일;한상엽;조인현;오승협;이대성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.636-640
    • /
    • 2002
  • Acoustic coupled combustion instability, which is one of the most undesirable phenomena in the development of liquid propellant rocket engine, can cause serious damage to a rocket itself, and must be avoided by all means. Unfortunately, KSR-III rocket went through combustion instability during engine start at the propulsion test article No.2. To resolve the problem, time sequence (cyclogram) has been changed, and baffle system has been applied. In consequence of change, stable combustion was achieved.

  • PDF

위성 발사체 페어링 내부음향 해석 (Acoustic Analysis in the Payload Fairing of Launch Vehicle)

  • 서상현;박순홍;정호경;장영순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.196-201
    • /
    • 2011
  • Acoustic load from rocket propulsion system is main source of random vibration working on the payload. To protect payload from this acoustic load, additional APS(acoustic protection system) is generally applied. Noise reduction capacity of APS can be verified through acoustic test and vibro-acoustic coupled analysis. This paper compared the results of acoustic test and vibro-acoustic coupled analysis about KSLV-I payload fairing with APS.

  • PDF

보빈 적층 방식의 다중 공유결합 인덕터를 이용한 4병렬 스위칭 정류기에 관한 연구 (A Study on the Expandable Bobbin Type Multiple Integrated Coupled-Inductor Applied 4-Pralleled Switching Rectifier)

  • 유정상;안태영
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.18-24
    • /
    • 2019
  • In this paper, expandable bobbin type multiple integrated coupled-inductor applied 4-paralled switching rectifier was proposed. To design the proposed inductor easily, inductance designing formula was derived through magnetic circuit analysis of the 4-paralleled integrated coupled-inductor. Furthermore, to verify practicality of the proposed inductor, it was applied in 600W class 4-paralleled interleaved switching rectifier, and the steady-state characteristics of the proposed inductor and discrete inductors were compared. Consequently, it was showed that the proposed inductor can replace the conventional discrete inductors with alternative electrical characteristic standard, hence miniaturization of the SMPS can be achieved. From the test result, test circuit with the proposed inductor showed maximum 97.1% of power conversion efficiency and under 18W of power loss where the circuit with discrete inductors showed 96.7% and 20W respectively.

Coupled Dynamic Simulation of a Tug-Towline-Towed Barge based on the Multiple Element Model of Towline

  • Yoon, Hyeon Kyu;Kim, Yeon Gyu
    • 한국항해항만학회지
    • /
    • 제36권9호
    • /
    • pp.707-714
    • /
    • 2012
  • Recently, tug boats are widely used for towing a barge which transports building materials, a large block of a ship, offshore crane, and so on. In order to simulate the dynamics of the coupled towing system correctly, the dynamics of the towline should be well modeled. In this paper, the towline was modeled as the multiple finite elements, and each element was assumed as a rigid cylinder which moves in five degrees of freedom except roll. The external tension and its moment acting on each element of the towline were modeled depending on the position vector's direction. Tugboat's motion was simulated in six degrees of freedom where wave and current effects were included, and towed barge was assumed to move in the horizontal plane only. In order to confirm the mathematical models of the coupled towing systems, standard maneuvering trials such as course changing maneuver, turning circle test and zig-zag test were simulated. In addition, the same trials were simulated when the external disturbances like wave and current exist. As the result, it is supposed that the results might be qualitatively reasonable.

Air-coupled ultrasonic tomography of solids: 2 Application to concrete elements

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.31-43
    • /
    • 2016
  • Applications of ultrasonic tomography to concrete structures have been reported for many years. However, practical and effective application of this tool for nondestructive assessment of internal concrete condition is hampered by time consuming transducer coupling that limits the amount of ultrasonic data that can be collected. This research aims to deploy recent developments in air-coupled ultrasonic measurements of solids, described in Part 1 of this paper set, to concrete in order to image internal inclusions. Ultrasonic signals are collected from concrete samples using a fully air-coupled (contactless) test configuration. These air coupled data are compared to those collected using partial semi-contact and full-contact test configurations. Two samples are considered: a 150 mm diameter cylinder with an internal circular void and a prism with $300mm{\times}300mm$ square cross-section that contains internal damaged regions and embedded reinforcement. The heterogeneous nature of concrete material structure complicates the application and interpretation of ultrasonic measurements and imaging. Volumetric inclusions within the concrete specimens are identified in the constructed velocity tomograms, but wave scattering at internal interfaces of the concrete disrupts the images. This disruption reduces defect detection accuracy as compared with tomograms built up of data collected from homogeneous solid samples (PVC) that are described in Part 1 of this paper set. Semi-contact measurements provide some improvement in accuracy through higher signal-to-noise ratio while still allowing for reasonably rapid data collection.

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • 방사성폐기물학회지
    • /
    • 제21권1호
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

Transient testing from LV / SC coupled analysis by new shock synthesis

  • Girard, Alain;Cavro, Etienne;Dupuis, Paul-Eric
    • Advances in aircraft and spacecraft science
    • /
    • 제5권2호
    • /
    • pp.177-186
    • /
    • 2018
  • This paper deals with the idea to replace the usual high-level sine sweep test on shaker at system level, very severe, by a low level one completed by a transient test in the same configuration, in order to be more representative of the real environment, thus limiting over testing and improving the payload comfort. The problem of the transient test specification is first discussed. The proposed solution is to derive from LV/SC coupled analyses a shock response spectrum corresponding to two damping ratios. Then, the question of adequate shock synthesis is tackled. A new method with a given spectrum is considered for better potential and accuracy than the usual wavelets. A campaign on the Intespace bi-shaker devoted to system level showed its capability to perform the resulting test with one spectrum. First investigations to extend this approach to two spectra are in progress.

Seismic Response Analysis of Reinforced Concrete Wall Structure Using Macro Model

  • Kim, Dong-Kwan
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.99-112
    • /
    • 2016
  • During earthquake, reinforced concrete walls show complicated post-yield behavior varying with shear span-to-depth ratio, re-bar detail, and loading condition. In the present study, a macro-model for the nonlinear analysis of multi-story wall structures was developed. To conveniently describe the coupled flexure-compression and shear responses, a reinforced concrete wall was idealized with longitudinal and diagonal uniaxial elements. Simplified cyclic material models were used to describe the cyclic behavior of concrete and re-bars. For verification, the proposed method was applied to various existing test specimens of isolated and coupled walls. The results showed that the predictions agreed well with the test results including the load-carrying capacity, deformation capacity, and failure mode. Further the proposed model was applied to an existing wall structure tested on a shaking table. Three-dimensional nonlinear time history analyses using the proposed model were performed for the test specimen. The time history responses of the proposed method agreed with the test results including the lateral displacements and base shear.

소형펀치 시험을 이용한 API X52 저온 수소환경 파괴인성 예측 (Fracture Toughness Prediction of API X52 Using Small Punch Test Data in Hydrogen at Low Temperatures)

  • 김재윤;서기완;김윤재;김기석
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.117-129
    • /
    • 2023
  • Hydrogen embrittlement of a pipe is an important factor in hydrogen transport. To characterize hydrogen embrittlement, tensile and fracture toughness tests should be conducted. However, in the case of hydrogen-embrittled materials, it is difficult to perform tests in hydrogen environment, particularly at low temperatures. It would be useful to develop a methodology to predict the fracture toughness of hydrogen-embrittled materials at low temperatures using more efficient tests. In this study, the fracture toughness of API X52 steels in hydrogen at low temperatures is predicted from numerical simulation using coupled finite element (FE) damage analyses with FE diffusion analysis, calibrated by analyzing small punch test data.