• Title/Summary/Keyword: Coupled-field analysis

Search Result 531, Processing Time 0.028 seconds

Assessment of Landslide Susceptibility using a Coupled Infinite Slope Model and Hydrologic Model in Jinbu Area, Gangwon-Do (무한사면모델과 수리학적 모델의 결합을 통한 강원도 진부지역의 산사태 취약성 분석)

  • Lee, Jung Hyun;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.697-707
    • /
    • 2012
  • The quantitative landslide susceptibility assessment methods can be divided into statistical approaches and geomechanical approaches based on the consideration of the triggering factors and landslide models. The geomechanical approach is considered as one of the most effective approaches since this approach proposes physical slope model and considers geomorphological and geomechanical properties of slope materials. Therefore, the geomechanical approaches has been used widely in landslide susceptibility analysis using the infinite slope model as physical slope model. However, the previous studies assumed constant groundwater level for broad study area without the consideration of rainfall intensity and hydraulic properties of soil materials. Therefore, in this study, landslide susceptibility assessment was implemented using the coupled infinite slope model with hydrologic model. For the analysis, geomechanical and hydrualic properties of slope materials and rainfall intensity were measured from the soil samples which were obtained from field investigation. For the practical application, the proposed approach was applied to Jinbu area, Gangwon-Do which was experienced large amount of landslides in July 2006. In order to compare to the proposed approach, the previous approach was used to analyze the landslide susceptibility using randomly selected groundwater level. Comparison of the results shows that the accuracy of the proposed method was improved with the consideration of the hydrologic model.

A study on Etch Characteristics of {Y-2}{O_3}$ Thin Films in Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 {Y-2}{O_3}$ 박막의 식각 특성 연구)

  • Kim, Yeong-Chan;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.9
    • /
    • pp.611-615
    • /
    • 2001
  • Y$_2$O$_3$ thin films have been proposed as a buffering insulator of metal/ferroelectric/insulator/semiconductor field effect transistor(MFISFET)-type ferroelectric random access memory (FRAM). In this study, $Y_2$O$_3$ thin films were etched with inductively coupled plasma(ICP). The etch rates of $Y_2$O$_3$ and YMnO$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were investigated by varying Cl$_2$/(Cl$_2$+Ar) gas mixing ratio. The maximum etch rate of $Y_2$O$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were 302$\AA$/min, and 2.4 at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2 respectively. Optical emission spectroscopy(OES) was used to understand the effects of gas combination on the etch rate of $Y_2$O$_3$ thin film. The surface reaction of the etched $Y_2$O$_3$ thin films was investigated by x-ray photoelectron spectroscopy (XPS). XPS analysis confirmed that there was chemical reaction between Y and Cl. This result was confirmed by secondary ion mass spectroscopy(SIMS) analysis.

  • PDF

Analysis of Steep Cuts and Slopes in Cemented Sand Using Fracture Mechanics (파괴역학을 이용한 경화모래로 이루어진 사면의 해석)

  • Kim, Tae-Hoon;Kang, Kwon-Soo;Lee, Jong-Cheon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.161-168
    • /
    • 2003
  • Most natural deposits of sandy soil possess some degree of cementation resulting from the deposition and precipitation of cementing agents. The presence of cementation can have a significant influence on the stiffness and volume change behavior, and the strength of soils. An important feature of deposits of cemented sandy soils is their ability to remain stable in surprisingly high and almost vertical man-made cuts as well as natural slopes. Numerous field observations and studies of failures in slopes of cemented soils have reported that application of conventional analysis techniques of slope stability is inadequate. That is not only due to the fact that the failure surface of the slope is not circular, but also the fact that the average shear stress along the failure surface is much smaller than the shear strength measured in laboratory shear experiments. This observation alerts us to the fact that a mechanism different from conventional Mohr-Coulomb shear failure takes place, which may be related to fracture processes, which in turn are governed by fracture mechanics concepts and theory. In this study, steep slopes in cemented sand were assessed using fracture mechanics concepts. The results showed that FEM coupled with fracture mechanics concepts provides an excellent alternative in the design and safety assessment of earth structures in cemented soils.

Design and Implementation of the System for Automatic Classification of Blood Cell By Image Analysis (영상분석을 통한 혈구자동분류 시스템의 설계 및 구현)

  • Kim, Kyung-Su;Kim, Pan-Koo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.90-97
    • /
    • 1999
  • Recently, there have been many researches to automate processing and analysing image data in medical field, due to the advance of image processing techniques, the fast communication network and high performance hardware. In this paper, we design and implement the system based on the multi-layer neural network model to be able to analyze, differentiate and count blood cells in the peripheral blood image. To do these, we segment red and white-blood cell in blood image acquired from microscope with CCD(Charge-coupled device) camera and then apply the various feature extraction algorithms to classify. In addition to, we reduce multi-variate feature number using PCA(Principle Component Analysis) to construct more efficient classifier. So, in this paper, we are sure that the proposed system can be applied to a pathological guided system.

  • PDF

Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS

  • Chen, Wei;Balan, Prabhu;Popovich, David G.
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.552-562
    • /
    • 2020
  • Background: Ginsenosides are the unique and bioactive components in ginseng. Ginsenosides are affected by the growing environment and conditions. In New Zealand (NZ), Panax ginseng Meyer (P. ginseng) is grown as a secondary crop under a pine tree canopy with an open-field forest environment. There is no thorough analysis reported about NZ-grown ginseng. Methods: Ginsenosides from NZ-grown P. ginseng in different parts (main root, fine root, rhizome, stem, and leaf) with different ages (6, 12, 13, and 14 years) were extracted by ultrasonic extraction and characterized by Liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Twenty-one ginsenosides in these samples were accurately quantified and relatively quantified with 13 ginsenoside standards. Results: All compounds were separated in 40 min, and a total of 102 ginsenosides were identified by matching MS spectra data with 23 standard references or published known ginsenosides from P. ginseng. The quantitative results showed that the total content of ginsenosides in various parts of P. ginseng varied, which was not obviously dependent on age. In the underground parts, the 13-year-old ginseng root contained more abundant ginsenosides among tested ginseng samples, whereas in the aboveground parts, the greatest amount of ginsenosides was from the 14-year-old sample. In addition, the amount of ginsenosides is higher in the leaf and fine root and much lower in the stem than in the other parts of P. ginseng. Conclusion: This study provides the first-ever comprehensive report on NZ-grown wild simulated P. ginseng.

A computational shear displacement model for vibrational analysis of functionally graded beams with porosities

  • Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.369-384
    • /
    • 2015
  • This work presents a free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a simple displacement field based on higher order shear deformation theory is implemented. The proposed theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. In addition, it has strong similarities with Euler-Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. By employing the Hamilton's principle, governing equations of motion for coupled axial-shear-flexural response are determined. The validity of the present theory is investigated by comparing some of the present results with those of the first-order and the other higher-order theories reported in the literature. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

Comparative analysis of turbulence models in hydraulic jumps

  • Lobosco, Raquel J.;da Fonseca, David O.;Jannuzzia, Graziella M.F.;Costa, Necesio G.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.339-350
    • /
    • 2019
  • A numerical simulation of the incompressible multiphase hydraulic jump flow was performed to compare the interface prediction through the use of the three RANS turbulence models: $k-{\varepsilon}$, $RNGk-{\varepsilon}$ and SST $k-{\omega}$. A three dimensional no submerged hydraulic jump and a two dimensional submerged hydraulic jump were modeled. Both the geometry and the mesh were created using the open source Gmsh code. The project's geometry consists of a rectangular channel with length and height differences between the two dimensional and three dimensional simulations. Uniform hexahedral cells were used for the mesh. Three refining meshes were constructed to allow to verify simulation convergence. The Volume of Fluid (abbr. VOF) method was used for treatment of the air-water surface. The turbulence models were evaluated in three distinct set up configurations to provide a greater accuracy in the flow representation. In the two-dimensional analysis of a submerged hydraulic jump simulation, the turbulence model RNG RNG $k-{\varepsilon}$ provided a better interface adjust with the experimental results than the model $k-{\varepsilon}$ and SST $k-{\omega}$. In the three-dimensional simulation of a no-submerged hydraulic jump the k-# showed better results than the SST $k-{\omega}$ and RNG $k-{\varepsilon}$ capturing the height and length of the ledge with a better fit with the experimental results.

Personalized Diabetes Risk Assessment Through Multifaceted Analysis (PD- RAMA): A Novel Machine Learning Approach to Early Detection and Management of Type 2 Diabetes

  • Gharbi Alshammari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.17-25
    • /
    • 2023
  • The alarming global prevalence of Type 2 Diabetes Mellitus (T2DM) has catalyzed an urgent need for robust, early diagnostic methodologies. This study unveils a pioneering approach to predicting T2DM, employing the Extreme Gradient Boosting (XGBoost) algorithm, renowned for its predictive accuracy and computational efficiency. The investigation harnesses a meticulously curated dataset of 4303 samples, extracted from a comprehensive Chinese research study, scrupulously aligned with the World Health Organization's indicators and standards. The dataset encapsulates a multifaceted spectrum of clinical, demographic, and lifestyle attributes. Through an intricate process of hyperparameter optimization, the XGBoost model exhibited an unparalleled best score, elucidating a distinctive combination of parameters such as a learning rate of 0.1, max depth of 3, 150 estimators, and specific colsample strategies. The model's validation accuracy of 0.957, coupled with a sensitivity of 0.9898 and specificity of 0.8897, underlines its robustness in classifying T2DM. A detailed analysis of the confusion matrix further substantiated the model's diagnostic prowess, with an F1-score of 0.9308, illustrating its balanced performance in true positive and negative classifications. The precision and recall metrics provided nuanced insights into the model's ability to minimize false predictions, thereby enhancing its clinical applicability. The research findings not only underline the remarkable efficacy of XGBoost in T2DM prediction but also contribute to the burgeoning field of machine learning applications in personalized healthcare. By elucidating a novel paradigm that accentuates the synergistic integration of multifaceted clinical parameters, this study fosters a promising avenue for precise early detection, risk stratification, and patient-centric intervention in diabetes care. The research serves as a beacon, inspiring further exploration and innovation in leveraging advanced analytical techniques for transformative impacts on predictive diagnostics and chronic disease management.

On-line Magnetic Resonance Quality Evaluation Sensor

  • Kim, Seong-Min;McCarthy, Michael J.;Chen, Pictiaw;Zion, Boaz
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.314-324
    • /
    • 1996
  • A high speed NMR quality evaluation sensor was designed , constructed and tested . The device consists of an NMR spectrometer coupled to a conveyor system. The conveyor was run at speeds ranging from 0 to 250 mm/s. Spectral of avocado fruits and one-dimensional magnetic resonance images of pickled olives were acquired while the samples were moving on a conveyor belt mounted through a 20Tesla NMR magnet with a 20 mm diameter surface coil and a 150 mm diameter imaging coil respectively. Fro a magnetic resonance spectrum analysis, motion through variations in the magnetic field tends to narrow spectral line width just like using sample rotation in high resolution NMR to narrow spectral line width. Spectrum analysis was used to detect the dry weight of avocado fruits using the ratio oil and water resonance peaks. Good correlations maximum r=0.970@ 50 mm/s and minimum r=0.894@250mm/s ) between oil and water resonance peak ratio and dry weight of avocados were observed at speeds ra ging from0 to 250mm/s. For the application of magnetic resonance imaging (MRI) method, the projections were used to distinguish between pitted and non-pitted olives . Effect of fruit position in the coil was tested and coil degree effects were noticed when projects were generated under dynamic conditions. Various belt speeds (up to 250mm/s) were tested and detection results were compared to static measurements. Higher classification errors were occurred at dynamic conditions compared to errors while olives were at rest.

  • PDF

Sex Pheromone and Seasonal Occurrence of the peach leafminer, Lyonetia clerkella Linne (복숭아굴나방의 성페로몬과 성충 발생소장)

  • Yang Chang-Yeol;Jeon Heung-Yong;Kim Dae-Young;Kim Hyeong-Hwan
    • Korean journal of applied entomology
    • /
    • v.45 no.1 s.142
    • /
    • pp.25-30
    • /
    • 2006
  • The female sex pheromone of the peach leafminer, Lyonetia clerkella Linne (Lepidoptera: Lyonetiidae), was analyzed by coupled gas chromatographic-electroantennographic detector (GC-EAD). GC-EAD analyses of pheromone gland extract revealed a single compound that elicited responses from male antennae. Retention time on DB-1 column of EAD-active compound was identical to that of synthetic (145)-14-Methyl-1-octadecene (14Sme-1-18Hy). In field tests, sticky traps baited with synthetic 14Sme-1-18Hy alone were highly attractive to male. Traps with 0.1 mg dose showed the lowest catches, but there were no significant difference in the numbers of moth caught in traps baited with doses of 0.5 and 1.0 mg. The results of the field assays for longevity of pheromone traps showed that effectiveness of lures maintained for at least 8 weeks under field condition. The attractiveness of 14Sme-1-18Hy was not affected by the addition of butylated hydroxytoluene (BHT) in lures as an antioxidant. Traps baited with 0.5 mg 14Sme-1-18Hy were successfully used to monitor L. clerkella male flights. Analysis of seasonal trap catches over two years showed that moth flight activity in peach orchards occurred over a period of seven months with six generations in Suwon.